@article{SIGMA_2016_12_a25,
author = {Yael Karshon and Jordan Watts},
title = {Basic {Forms} and {Orbit} {Spaces:} a {Diffeological} {Approach}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a25/}
}
Yael Karshon; Jordan Watts. Basic Forms and Orbit Spaces: a Diffeological Approach. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a25/
[1] Baez J. C., Hoffnung A. E., “Convenient categories of smooth spaces”, Trans. Amer. Math. Soc., 363 (2011), 5789–5825, arXiv: 0807.1704 | DOI | MR
[2] Blohmann C., Fernandes M. C. B., Weinstein A., “Groupoid symmetry and constraints in general relativity”, Commun. Contemp. Math., 15 (2013), 1250061, 25 pp., arXiv: 1003.2857 | DOI | MR
[3] Bredon G. E., Introduction to compact transformation groups, Pure and Applied Mathematics, 46, Academic Press, New York–London, 1972 | MR | Zbl
[4] Chen K.-T., “Iterated integrals of differential forms and loop space homology”, Ann. of Math., 97 (1973), 217–246 | DOI | MR | Zbl
[5] Chen K.-T., “On differentiable spaces”, Categories in Continuum Physics (Buffalo, N.Y., 1982), Lecture Notes in Math., 1174, Springer, Berlin, 1986, 38–42 | DOI | MR
[6] Crainic M., Struchiner I., “On the linearization theorem for proper Lie groupoids”, Ann. Sci. Éc. Norm. Supér. (4), 46 (2013), 723–746, arXiv: 1103.5245 | MR | Zbl
[7] Cushman R., Śniatycki J., “Differential structure of orbit spaces”, Canad. J. Math., 53 (2001), 715–755 | DOI | MR
[8] Donato P., Iglésias P., “Exemples de groupes difféologiques: flots irrationnels sur le tore”, C. R. Acad. Sci. Paris Sér. I Math., 301 (1985), 127–130 | MR | Zbl
[9] Duistermaat J. J., Kolk J. A. C., Lie groups, Universitext, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl
[10] Guillemin V., Ginzburg V., Karshon Y., Moment maps, cobordisms, and Hamiltonian group actions, Mathematical Surveys and Monographs, 98, Amer. Math. Soc., Providence, RI, 2002 | DOI | MR | Zbl
[11] Haefliger A., “Groupoïdes d'holonomie et classifiants”, Astérisque, 116, 1984, 70–97 | MR | Zbl
[12] Hochschild G., The structure of Lie groups, Holden-Day, Inc., San Francisco–London–Amsterdam, 1965 | MR | Zbl
[13] Iglesias P., Karshon Y., Zadka M., “Orbifolds as diffeologies”, Trans. Amer. Math. Soc., 362 (2010), 2811–2831, arXiv: math.DG/0501093 | DOI | MR | Zbl
[14] Iglesias-Zemmour P., Diffeology, Mathematical Surveys and Monographs, 185, Amer. Math. Soc., Providence, RI, 2013 | DOI | MR | Zbl
[15] Iglesias-Zemmour P., Karshon Y., “Smooth Lie group actions are parametrized diffeological subgroups”, Proc. Amer. Math. Soc., 140 (2012), 731–739, arXiv: 1012.0107 | DOI | MR | Zbl
[16] Karshon Y., Zoghi M., Orbifold groupoids and their underlying diffeology, Earlier version posted at ; Summarized in Zoghi's PhD thesis, University of Toronto, 2010 http://www.math.toronto.edu/mzoghi/research/Groupoids.pdf
[17] Koszul J. L., “Sur certains groupes de transformations de Lie”, Géométrie différentielle, Colloques Internationaux du Centre National de la Recherche Scientifique (Strasbourg, 1953), Centre National de la Recherche Scientifique, Paris, 1953, 137–141 | MR | Zbl
[18] Lerman E., Meinrenken E., Tolman S., Woodward C., “Nonabelian convexity by symplectic cuts”, Topology, 37 (1998), 245–259, arXiv: dg-ga/9603015 | DOI | MR | Zbl
[19] Palais R. S., “On the existence of slices for actions of non-compact Lie groups”, Ann. of Math., 73 (1961), 295–323 | DOI | MR | Zbl
[20] Satake I., “On a generalization of the notion of manifold”, Proc. Nat. Acad. Sci. USA, 42 (1956), 359–363 | DOI | MR | Zbl
[21] Satake I., “The Gauss–Bonnet theorem for $V$-manifolds”, J. Math. Soc. Japan, 9 (1957), 464–492 | DOI | MR | Zbl
[22] Schwarz G. W., “Smooth functions invariant under the action of a compact Lie group”, Topology, 14 (1975), 63–68 | DOI | MR | Zbl
[23] Sjamaar R., “A de Rham theorem for symplectic quotients”, Pacific J. Math., 220 (2005), 153–166, arXiv: math.SG/0208080 | DOI | MR | Zbl
[24] Sjamaar R., Lerman E., “Stratified symplectic spaces and reduction”, Ann. of Math., 134 (1991), 375–422 | DOI | MR | Zbl
[25] Śniatycki J., Differential geometry of singular spaces and reduction of symmetry, New Mathematical Monographs, 23, Cambridge University Press, Cambridge, 2013 | DOI | MR
[26] Souriau J.-M., “Groupes différentiels”, Differential Geometrical Methods in Mathematical Physics, Proc. Conf. (Aix-en-Provence/Salamanca, 1979), Lecture Notes in Math., 836, Springer, Berlin–New York, 1980, 91–128 | DOI | MR
[27] Watts J., The calculus on subcartesian spaces, M. Sc. Thesis, University of Calgary, Canada, 2006 | Zbl
[28] Watts J., Diffeologies, differential spaces, and symplectic geometry, Ph.D. Thesis, University of Toronto, Canada, 2012 | MR
[29] Watts J., The orbit space and basic forms of a proper Lie groupoid, arXiv: 1309.3001
[30] Watts J., Wolbert S., Diffeology: a concrete foundation for stacks, arXiv: 1406.1392