Loops in SU(2), Riemann Surfaces, and Factorization, I
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In previous work we showed that a loop $g\colon S^1 \to \mathrm{SU}(2)$ has a triangular factorization if and only if the loop $g$ has a root subgroup factorization. In this paper we present generalizations in which the unit disk and its double, the sphere, are replaced by a based compact Riemann surface with boundary, and its double. One ingredient is the theory of generalized Fourier–Laurent expansions developed by Krichever and Novikov. We show that a $\mathrm{SU}(2)$ valued multiloop having an analogue of a root subgroup factorization satisfies the condition that the multiloop, viewed as a transition function, defines a semistable holomorphic $\mathrm{SL}(2,\mathbb C)$ bundle. Additionally, for such a multiloop, there is a corresponding factorization for determinants associated to the spin Toeplitz operators defined by the multiloop.
Keywords: loop group; factorization; Toeplitz operator; determinant.
@article{SIGMA_2016_12_a24,
     author = {Estelle Basor and Doug Pickrell},
     title = {Loops in {SU(2),} {Riemann} {Surfaces,} and {Factorization,~I}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a24/}
}
TY  - JOUR
AU  - Estelle Basor
AU  - Doug Pickrell
TI  - Loops in SU(2), Riemann Surfaces, and Factorization, I
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a24/
LA  - en
ID  - SIGMA_2016_12_a24
ER  - 
%0 Journal Article
%A Estelle Basor
%A Doug Pickrell
%T Loops in SU(2), Riemann Surfaces, and Factorization, I
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a24/
%G en
%F SIGMA_2016_12_a24
Estelle Basor; Doug Pickrell. Loops in SU(2), Riemann Surfaces, and Factorization, I. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a24/

[1] Basor E., Pickrell D., Loops in ${\rm SU}(2)$, Riemann surfaces, and factorization, II: Examples, in progress

[2] Bott R., “Stable bundles revisited”, Surveys in Differential Geometry (Cambridge, MA, 1990), Lehigh University, Bethlehem, PA, 1991, 1–18 | MR

[3] Böttcher A., Silbermann B., Analysis of Toeplitz operators, Springer-Verlag, Berlin, 1990 | DOI | MR

[4] Clancey K. F., Gohberg I., Factorization of matrix functions and singular integral operators, Operator Theory: Advances and Applications, 3, Birkhäuser Verlag, Basel–Boston, Mass., 1981 | DOI | MR

[5] Gohberg I., Krupnik N., Einführung in die Theorie der eindimensionalen singulären Integraloperatoren, Mathematische Reihe, 63, Birkhäuser Verlag, Basel–Boston, Mass., 1979 | DOI | MR

[6] Griffiths P., Harris J., Principles of algebraic geometry, Pure and Applied Mathematics, John Wiley Sons, New York, 1978 | MR

[7] Grothendieck A., “Sur la classification des fibrés holomorphes sur la sphère de Riemann”, Amer. J. Math., 79 (1957), 121–138 | DOI | MR

[8] Hawley N. S., Schiffer M., “Half-order differentials on Riemann surfaces”, Acta Math., 115 (1966), 199–236 | DOI | MR

[9] Helgason S., Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions, Pure and Applied Mathematics, 113, Academic Press, Inc., Orlando, FL, 1984 | MR

[10] Helton J. W., Howe R. E., “Integral operators: commutators, traces, index and homology”, Proceedings of a Conference Operator Theory (Dalhousie Univ., Halifax, N.S., 1973), Lecture Notes in Math., 345, Springer, Berlin, 1973, 141–209 | DOI | MR

[11] Krichever I. M., Novikov S. P., “Virasoro–Gelfand–Fuks type algebras, Riemann surfaces, operator's theory of closed strings”, J. Geom. Phys., 5 (1989), 631–661 | DOI | MR

[12] Peller V. V., Hankel operators and their applications, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003 | DOI | MR

[13] Pickrell D., Invariant measures for unitary forms of Kac–Moody groups, Mem. Amer. Math. Soc., 146, 2000, 144 pp., arXiv: funct-an/9510005 | DOI | MR

[14] Pickrell D., “Homogeneous Poisson structures on loop spaces of symmetric spaces”, SIGMA, 4 (2008), 069, 33 pp., arXiv: 0801.3277 | DOI | MR

[15] Pickrell D., “Loops in ${\rm SU}(2)$ and factorization”, J. Funct. Anal., 260 (2011), 2191–2221, arXiv: 0903.4983 | DOI | MR

[16] Pressley A., Segal G., Loop groups, Oxford Science Publications, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986 | MR

[17] Ramanathan A., “Stable principal bundles on a compact Riemann surface”, Math. Ann., 213 (1975), 129–152 | DOI | MR

[18] Rodin Y. L., “The Riemann boundary value problem on closed Riemann surfaces and integrable systems”, Phys. D, 24 (1987), 1–53 | DOI | MR

[19] Sato M., “Theory of hyperfunctions, I”, J. Fac. Sci. Univ. Tokyo. Sect. I, 8 (1959), 139–193 | MR

[20] Segal G., “The definition of conformal field theory”, Topology, Geometry and Quantum Field Theory, London Mathematical Society Lecture Note Series, 308, Cambridge University Press, Cambridge, 2004, 421–577 | DOI | MR

[21] Widom H., “Asymptotic behavior of block Toeplitz matrices and determinants, II”, Adv. Math., 21 (1976), 1–29 | DOI | MR