@article{SIGMA_2016_12_a24,
author = {Estelle Basor and Doug Pickrell},
title = {Loops in {SU(2),} {Riemann} {Surfaces,} and {Factorization,~I}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a24/}
}
Estelle Basor; Doug Pickrell. Loops in SU(2), Riemann Surfaces, and Factorization, I. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a24/
[1] Basor E., Pickrell D., Loops in ${\rm SU}(2)$, Riemann surfaces, and factorization, II: Examples, in progress
[2] Bott R., “Stable bundles revisited”, Surveys in Differential Geometry (Cambridge, MA, 1990), Lehigh University, Bethlehem, PA, 1991, 1–18 | MR
[3] Böttcher A., Silbermann B., Analysis of Toeplitz operators, Springer-Verlag, Berlin, 1990 | DOI | MR
[4] Clancey K. F., Gohberg I., Factorization of matrix functions and singular integral operators, Operator Theory: Advances and Applications, 3, Birkhäuser Verlag, Basel–Boston, Mass., 1981 | DOI | MR
[5] Gohberg I., Krupnik N., Einführung in die Theorie der eindimensionalen singulären Integraloperatoren, Mathematische Reihe, 63, Birkhäuser Verlag, Basel–Boston, Mass., 1979 | DOI | MR
[6] Griffiths P., Harris J., Principles of algebraic geometry, Pure and Applied Mathematics, John Wiley Sons, New York, 1978 | MR
[7] Grothendieck A., “Sur la classification des fibrés holomorphes sur la sphère de Riemann”, Amer. J. Math., 79 (1957), 121–138 | DOI | MR
[8] Hawley N. S., Schiffer M., “Half-order differentials on Riemann surfaces”, Acta Math., 115 (1966), 199–236 | DOI | MR
[9] Helgason S., Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions, Pure and Applied Mathematics, 113, Academic Press, Inc., Orlando, FL, 1984 | MR
[10] Helton J. W., Howe R. E., “Integral operators: commutators, traces, index and homology”, Proceedings of a Conference Operator Theory (Dalhousie Univ., Halifax, N.S., 1973), Lecture Notes in Math., 345, Springer, Berlin, 1973, 141–209 | DOI | MR
[11] Krichever I. M., Novikov S. P., “Virasoro–Gelfand–Fuks type algebras, Riemann surfaces, operator's theory of closed strings”, J. Geom. Phys., 5 (1989), 631–661 | DOI | MR
[12] Peller V. V., Hankel operators and their applications, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003 | DOI | MR
[13] Pickrell D., Invariant measures for unitary forms of Kac–Moody groups, Mem. Amer. Math. Soc., 146, 2000, 144 pp., arXiv: funct-an/9510005 | DOI | MR
[14] Pickrell D., “Homogeneous Poisson structures on loop spaces of symmetric spaces”, SIGMA, 4 (2008), 069, 33 pp., arXiv: 0801.3277 | DOI | MR
[15] Pickrell D., “Loops in ${\rm SU}(2)$ and factorization”, J. Funct. Anal., 260 (2011), 2191–2221, arXiv: 0903.4983 | DOI | MR
[16] Pressley A., Segal G., Loop groups, Oxford Science Publications, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986 | MR
[17] Ramanathan A., “Stable principal bundles on a compact Riemann surface”, Math. Ann., 213 (1975), 129–152 | DOI | MR
[18] Rodin Y. L., “The Riemann boundary value problem on closed Riemann surfaces and integrable systems”, Phys. D, 24 (1987), 1–53 | DOI | MR
[19] Sato M., “Theory of hyperfunctions, I”, J. Fac. Sci. Univ. Tokyo. Sect. I, 8 (1959), 139–193 | MR
[20] Segal G., “The definition of conformal field theory”, Topology, Geometry and Quantum Field Theory, London Mathematical Society Lecture Note Series, 308, Cambridge University Press, Cambridge, 2004, 421–577 | DOI | MR
[21] Widom H., “Asymptotic behavior of block Toeplitz matrices and determinants, II”, Adv. Math., 21 (1976), 1–29 | DOI | MR