Nijenhuis Integrability for Killing Tensors
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The fundamental tool in the classification of orthogonal coordinate systems in which the Hamilton–Jacobi and other prominent equations can be solved by a separation of variables are second order Killing tensors which satisfy the Nijenhuis integrability conditions. The latter are a system of three non-linear partial differential equations. We give a simple and completely algebraic proof that for a Killing tensor the third and most complicated of these equations is redundant. This considerably simplifies the classification of orthogonal separation coordinates on arbitrary (pseudo-)Riemannian manifolds.
Keywords: integrable systems; separation of variables; Killing tensors; Nijenhuis tensor; Haantjes tensor.
@article{SIGMA_2016_12_a23,
     author = {Konrad Sch\"obel},
     title = {Nijenhuis {Integrability} for {Killing} {Tensors}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a23/}
}
TY  - JOUR
AU  - Konrad Schöbel
TI  - Nijenhuis Integrability for Killing Tensors
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a23/
LA  - en
ID  - SIGMA_2016_12_a23
ER  - 
%0 Journal Article
%A Konrad Schöbel
%T Nijenhuis Integrability for Killing Tensors
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a23/
%G en
%F SIGMA_2016_12_a23
Konrad Schöbel. Nijenhuis Integrability for Killing Tensors. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a23/

[1] Eisenhart L. P., “Separable systems of Stäckel”, Ann. of Math., 35 (1934), 284–305 | DOI | MR

[2] Horwood J. T., McLenaghan R. G., Smirnov R. G., “Invariant classification of orthogonally separable Hamiltonian systems in Euclidean space”, Comm. Math. Phys., 259 (2005), 670–709, arXiv: math-ph/0605023 | DOI | MR

[3] Kalnins E. G., Separation of variables for Riemannian spaces of constant curvature, Pitman Monographs and Surveys in Pure and Applied Mathematics, 28, Longman Scientific Technical, Harlow, 1986 | MR

[4] Kalnins E. G., Miller W. (Jr.), “Separation of variables on $n$-dimensional Riemannian manifolds. I: The $n$-sphere $S_n$ and Euclidean $n$-space $R^n$”, J. Math. Phys., 27 (1986), 1721–1736 | DOI | MR

[5] Nijenhuis A., “$X_{n-1}$-forming sets of eigenvectors”, Indag. Math., 54 (1951), 200–212 | DOI | MR

[6] Schöbel K., “Algebraic integrability conditions for Killing tensors on constant sectional curvature manifolds”, J. Geom. Phys., 62 (2012), 1013–1037, arXiv: 1004.2872 | DOI | MR

[7] Schöbel K., “The variety of integrable Killing tensors on the 3-sphere”, SIGMA, 10 (2014), 080, 48 pp., arXiv: 1205.6227 | DOI | MR

[8] Konrad Schöbel, “Are Orthogonal Separable Coordinates Really Classified?”, SIGMA, 12 (2016), 041, 16 pp., arXiv: 1510.09028 | DOI

[9] Schöbel K., Veselov A. P., “Separation coordinates, moduli spaces and Stasheff polytopes”, Comm. Math. Phys., 337 (2015), 1255–1274, arXiv: 1307.6132 | DOI | MR

[10] Stäckel P., Die Integration der Hamilton–Jacobischen Differentialgleichung mittelst Separation der Variablen, Habilitationsschrift, Universität Halle, 1891