@article{SIGMA_2016_12_a21,
author = {B{\l}azej M. Szablikowski},
title = {Hierarchies of {Manakov{\textendash}Santini} {Type} by {Means} of {Rota{\textendash}Baxter} and {Other} {Identities}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a21/}
}
TY - JOUR AU - Błazej M. Szablikowski TI - Hierarchies of Manakov–Santini Type by Means of Rota–Baxter and Other Identities JO - Symmetry, integrability and geometry: methods and applications PY - 2016 VL - 12 UR - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a21/ LA - en ID - SIGMA_2016_12_a21 ER -
Błazej M. Szablikowski. Hierarchies of Manakov–Santini Type by Means of Rota–Baxter and Other Identities. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a21/
[1] Baxter G., “An analytic problem whose solution follows from a simple algebraic identity”, Pacific J. Math., 10 (1960), 731–742 | DOI | MR
[2] Błaszak M., “Classical $R$-matrices on Poisson algebras and related dispersionless systems”, Phys. Lett A, 297 (2002), 191–195 | DOI | MR
[3] Błaszak M., Szablikowski B. M., “Classical $R$-matrix theory of dispersionless systems. I: $(1+1)$-dimensional theory”, J. Phys. A: Math. Gen., 35 (2002), 10325–10344, arXiv: nlin.SI/0211008 | DOI | MR
[4] Błaszak M., Szablikowski B. M., “Classical $R$-matrix theory of dispersionless systems. II: $(2+1)$ dimension theory”, J. Phys. A: Math. Gen., 35 (2002), 10345–10364, arXiv: nlin.SI/0211018 | DOI | MR
[5] Błaszak M., Szablikowski B. M., “Classical $R$-matrix theory for bi-Hamiltonian field systems”, J. Phys. A: Math. Theor., 42 (2009), 404002, 35 pp., arXiv: 0902.1511 | DOI | MR
[6] Bogdanov L. V., “On a class of multidimensional integrable hierarchies and their reductions”, Theoret. and Math. Phys., 160 (2009), 887–893, arXiv: 0810.2397 | DOI | MR
[7] Bogdanov L. V., “Non-Hamiltonian generalizations of the dispersionless 2DTL hierarchy”, J. Phys. A: Math. Theor., 43 (2010), 434008, 8 pp., arXiv: 1003.0287 | DOI | MR
[8] Bogdanov L. V., “On a class of reductions of the Manakov–Santini hierarchy connected with the interpolating system”, J. Phys. A: Math. Theor., 43 (2010), 115206, 11 pp., arXiv: 0910.4004 | DOI | MR
[9] Bogdanov L. V., Chang J.-H., Chen Y.-T., Generalized dKP: Manakov–Santini hierarchy and its waterbag reduction, arXiv: 0810.0556
[10] Chang J.-H., Chen Y.-T., “Hodograph solutions for the Manakov–Santini equation”, J. Math. Phys., 51 (2010), 042701, 18 pp., arXiv: 0904.4595 | DOI | MR
[11] Dunajski M., “A class of Einstein–Weyl spaces associated to an integrable system of hydrodynamic type”, J. Geom. Phys., 51 (2004), 126–137, arXiv: nlin.SI/0311024 | DOI | MR
[12] Guo L., What is $\ldots$ a Rota–Baxter algebra?, Notices Amer. Math. Soc., 56 (2009), 1436–1437 | MR
[13] Guo L., An introduction to Rota–Baxter algebra, Surveys of Modern Mathematics, 4, International Press, Somerville, MA, 2012 | MR
[14] Manakov S. V., Santini P. M., “Inverse scattering problem for vector fields and the Cauchy problem for the heavenly equation”, Phys. Lett. A, 359 (2006), 613–619, arXiv: nlin.SI/0604024 | DOI | MR
[15] Manakov S. V., Santini P. M., “A hierarchy of integrable partial differential equations in dimension $2+1$, associated with one-parameter families of vector fields”, Theoret. and Math. Phys., 152 (2007), 1004–1011 | DOI | MR
[16] Manakov S. V., Santini P. M., “On the solutions of the dKP equation: the nonlinear Riemann–Hilbert problem, longtime behaviour, implicit solutions and wave breaking”, J. Phys. A: Math. Theor., 41 (2008), 055204, 23 pp., arXiv: 0707.1802 | DOI | MR
[17] Manakov S. V., Santini P. M., “The dispersionless 2D Toda equation: dressing, Cauchy problem, longtime behaviour, implicit solutions and wave breaking”, J. Phys. A: Math. Theor., 42 (2009), 095203, 16 pp., arXiv: 0810.4676 | DOI | MR
[18] Manakov S. V., Santini P. M., “On the solutions of the second heavenly and Pavlov equations”, J. Phys. A: Math. Theor., 42 (2009), 404013, 11 pp., arXiv: 0812.3323 | DOI | MR
[19] Mañas M., “On the $r$th dispersionless Toda hierarchy: factorization problem, additional symmetries and some solutions”, J. Phys. A: Math. Gen., 37 (2004), 9195–9224, arXiv: nlin.SI/0404022 | DOI | MR
[20] Mañas M., “$S$-functions, reductions and hodograph solutions of the $r$th dispersionless modified KP and Dym hierarchies”, J. Phys. A: Math. Gen., 37 (2004), 11191–11221, arXiv: nlin.SI/0405028 | DOI | MR
[21] Martínez Alonso L., Shabat A. B., “Energy-dependent potentials revisited: a universal hierarchy of hydrodynamic type”, Phys. Lett. A, 299 (2002), 359–365, arXiv: nlin.SI/0202008 | DOI | MR
[22] Martínez Alonso L., Shabat A. B., “Towards a theory of differential constraints of a hydrodynamic hierarchy”, J. Nonlinear Math. Phys., 10 (2003), 229–242, arXiv: nlin.SI/0310036 | DOI | MR
[23] Martínez Alonso L., Shabat A. B., “Hydrodynamic reductions and solutions of the universal hierarchy”, Theoret. and Math. Phys., 140 (2004), 1073–1085, arXiv: nlin.SI/0312043 | DOI | MR
[24] Pavlov M. V., “Integrable hydrodynamic chains”, J. Math. Phys., 44 (2003), 4134–4156, arXiv: nlin.SI/0301010 | DOI | MR
[25] Pavlov M. V., Chang J.-H., Chen Y.-T., Integrability of the Manakov–Santini hierarchy, arXiv: 0910.2400
[26] Rota G. C., “Baxter algebras and combinatorial identities, I”, Bull. Amer. Math. Soc., 75 (1969), 325–329 | DOI | MR
[27] Rota G. C., “Baxter algebras and combinatorial identities, II”, Bull. Amer. Math. Soc., 75 (1969), 330–334 | DOI | MR
[28] Semenov-Tian-Shansky M. A., “Integrable systems and factorization problems”, Factorization and Integrable Systems (Faro, 2000), Oper. Theory Adv. Appl., 141, Birkhäuser, Basel, 2003, 155–218, arXiv: nlin.SI/0209057 | DOI | MR
[29] Semenov-Tyan-Shanskii M. A., What is a classical $r$-matrix?, Funct. Anal. Appl., 17 (1983), 259–272 | DOI | MR
[30] Sergyeyev A., Szablikowski B. M., “Central extensions of cotangent universal hierarchy: $(2+1)$-dimensional bi-Hamiltonian systems”, Phys. Lett. A, 372 (2008), 7016–7023, arXiv: 0807.1294 | DOI | MR
[31] Szablikowski B. M., “Classical $r$-matrix like approach to Frobenius manifolds, WDVV equations and flat metrics”, J. Phys. A: Math. Theor., 48 (2015), 315203, 47 pp., arXiv: 1304.2075 | DOI | MR
[32] Szablikowski B. M., Błaszak M., “Meromorphic Lax representations of $(1+1)$-dimensional multi-Hamiltonian dispersionless systems”, J. Math. Phys., 47 (2006), 092701, 23 pp., arXiv: nlin.SI/0510068 | DOI | MR
[33] Takasaki K., Takebe T., “${\rm SDiff}(2)$ KP hierarchy”, Internat. J. Modern Phys. A, 7 (1992), 889–922, arXiv: hep-th/9112046 | DOI | MR
[34] Takasaki K., Takebe T., “Integrable hierarchies and dispersionless limit”, Rev. Math. Phys., 7 (1995), 743–808, arXiv: hep-th/9405096 | DOI | MR