@article{SIGMA_2016_12_a20,
author = {Mourad E. H. Ismail and Ruiming Zhang},
title = {Classes of {Bivariate} {Orthogonal} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a20/}
}
Mourad E. H. Ismail; Ruiming Zhang. Classes of Bivariate Orthogonal Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a20/
[1] Al-Salam W. A., Chihara T. S., “Convolutions of orthonormal polynomials”, SIAM J. Math. Anal., 7 (1976), 16–28 | DOI | MR | Zbl
[2] Ali S. T., Bagarello F., Honnouvo G., “Modular structures on trace class operators and applications to Landau levels”, J. Phys. A: Math. Theor., 43 (2010), 105202, 17 pp., arXiv: 0906.3980 | DOI | MR | Zbl
[3] Appell P., “Sur des polynômes de deux variables analogues aux polynômes de Jacobi”, Archiv Math. Phys., 66 (1881), 238–245
[4] Appell P., Kampé de Fériet J., Fonctions hypergéométriques et hypersphériques. Polynomes d'Hermite, Gauthier-Villars, Paris, 1926 | MR
[5] Chihara T. S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York–London–Paris, 1978 | MR | Zbl
[6] Cotfas N., Gazeau J. P., Górska K., “Complex and real Hermite polynomials and related quantizations”, J. Phys. A: Math. Theor., 43 (2010), 305304, 14 pp., arXiv: 1001.3248 | DOI | MR | Zbl
[7] Dunkl C. F., Xu Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, 2nd ed., Cambridge University Press, Cambridge, 2014 | DOI | MR | Zbl
[8] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. II, McGraw-Hill Book Company, New York, 1953
[9] Finkel F., Kamran N., “The Lie algebraic structure of differential operators admitting invariant spaces of polynomials”, Adv. in Appl. Math., 20 (1998), 300–322, arXiv: q-alg/9612027 | DOI | MR | Zbl
[10] Floris P. G. A., “A noncommutative discrete hypergroup associated with $q$-disk polynomials”, J. Comput. Appl. Math., 68 (1996), 69–78 | DOI | MR | Zbl
[11] Floris P. G. A., Koelink H. T., “A commuting $q$-analogue of the addition formula for disk polynomials”, Constr. Approx., 13 (1997), 511–535, arXiv: math.QA/9509222 | DOI | MR | Zbl
[12] Ghanmi A., “A class of generalized complex Hermite polynomials”, J. Math. Anal. Appl., 340 (2008), 1395–1406, arXiv: 0704.3576 | DOI | MR | Zbl
[13] Ghanmi A., “Operational formulae for the complex Hermite polynomials $H_{p,q}(z,\overline{z})$”, Integral Transforms Spec. Funct., 24 (2013), 884–895, arXiv: 1211.5746 | DOI | MR | Zbl
[14] Hermite C., “Sur un nouveau développement en series des fonctions”, Comptes Rendus Acad. Sci. Paris, 58 (1864), 93–100; 266–273
[15] Hermite C., “Sur quelques développement en series des fonctions”, Comptes Rendus Acad. Sci. Paris, 60 (1865), 370–377; 432–440; 461–466; 512–518
[16] Intissar A., Intissar A., “Spectral properties of the Cauchy transform on $L_2({\mathbb C},e^{-\vert z\vert^2}\lambda(z))$”, J. Math. Anal. Appl., 313 (2006), 400–418 | DOI | MR | Zbl
[17] Ismail M. E. H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2009 | MR | Zbl
[18] Ismail M. E. H., Trans. Amer. Math. Soc., 368 (2016), Analytic properties of complex Hermite polynomials | DOI | MR
[19] Ismail M. E. H., Zeng J., “A combinatorial approach to the 2D-Hermite and 2D-Laguerre polynomials”, Adv. in Appl. Math., 64 (2015), 70–88 | DOI | MR | Zbl
[20] Ismail M. E. H., Zeng J., “Two variable extensions of the Laguerre and disc polynomials”, J. Math. Anal. Appl., 424 (2015), 289–303 | DOI | MR | Zbl
[21] Ismail M. E. H., Zeng J., “On some $2D$ orthogonal $q$-polynomials”, Trans. Amer. Math. Soc. (to appear) , arXiv: 1411.5223
[22] Itô K., “Complex multiple Wiener integral”, Japan J. Math., 22 (1952), 63–86 | MR | Zbl
[23] Koekoek R., Swarttouw R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, Report 98-17, Faculty of Technical Mathematics and Informatics, Delft University of Technology, 1998 http://aw.twi.tudelft.nl/k̃oekoek/askey/
[24] Koornwinder T. H., The addition formula for Jacobi polynomials. III: Completion of the proof, Report TW 135/72, Mathematisch Centrum, Amsterdam, 1972 https://staff.fnwi.uva.nl/t.h.koornwinder/art/1972/addition3.pdf | MR
[25] Koornwinder T. H., “Two-variable analogues of the classical orthogonal polynomials”, Theory and Application of Special Functions, Proc. Advanced Sem. (Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), Academic Press, New York, 1975, 435–495 | MR
[26] Maldonado C. D., “Note on orthogonal polynomials which are “invariant in form” to rotations of axes”, J. Math. Phys., 6 (1965), 1935–1938 | DOI | MR | Zbl
[27] Myrick D. R., “A generalization of the radial polynomials of F. Zernike”, SIAM J. Appl. Math., 14 (1966), 476–489 | DOI | MR | Zbl
[28] Rainville E. D., Special functions, The Macmillan Co., New York, 1960 | MR | Zbl
[29] Šapiro R. L., “Special functions related to representations of the group ${\rm SU}(n)$, of class I with respect to ${\rm SU}(n-1)$ $(n\ge 3)$”, Izv. Vyssh. Uchebn. Zaved. Matematika, 1968, no. 4, 97–107 | MR
[30] Shigekawa I., “Eigenvalue problems for the Schrödinger operator with the magnetic field on a compact Riemannian manifold”, J. Funct. Anal., 75 (1987), 92–127 | DOI | MR | Zbl
[31] Szeg{ő} G., Orthogonal polynomials, Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975 | MR
[32] Thirulogasanthar K., Honnouvo G., Krzyżak A., “Coherent states and Hermite polynomials on quaternionic Hilbert spaces”, J. Phys. A: Math. Theor., 43 (2010), 385205, 13 pp. | DOI | MR | Zbl
[33] Waldron S., “Orthogonal polynomials on the disc”, J. Approx. Theory, 150 (2008), 117–131 | DOI | MR | Zbl
[34] Wünsche A., “Laguerre $2$D-functions and their application in quantum optics”, J. Phys. A: Math. Gen., 31 (1998), 8267–8287 | DOI | MR
[35] Wünsche A., “Transformations of Laguerre $2D$-polynomials and their applications to quasiprobabilities”, J. Phys. A: Math. Gen., 32 (1999), 3179–3199 | DOI | MR
[36] Wünsche A., “Generalized Zernike or disc polynomials”, J. Comput. Appl. Math., 174 (2005), 135–163 | DOI | MR
[37] Xu Y., “Complex versus real orthogonal polynomials of two variables”, Integral Transforms Spec. Funct., 26 (2015), 134–151, arXiv: 1307.7819 | DOI | MR | Zbl
[38] Zernike F., “Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode”, Physica, 1 (1934), 689–704 | DOI | Zbl
[39] Zernike F., Brinkman H. C., “Hypersphärische Funktionen und die in sphärischen Bereichen orthogonalen Polynome”, Proc. Akad. Wet. Amsterdam, 38 (1935), 161–170