Doubling (Dual) Hahn Polynomials: Classification and Applications
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We classify all pairs of recurrence relations in which two Hahn or dual Hahn polynomials with different parameters appear. Such couples are referred to as (dual) Hahn doubles. The idea and interest comes from an example appearing in a finite oscillator model [Jafarov E.I., Stoilova N.I., Van der Jeugt J., J. Phys. A: Math. Theor. 44 (2011), 265203, 15 pages, arXiv:1101.5310]. Our classification shows there exist three dual Hahn doubles and four Hahn doubles. The same technique is then applied to Racah polynomials, yielding also four doubles. Each dual Hahn (Hahn, Racah) double gives rise to an explicit new set of symmetric orthogonal polynomials related to the Christoffel and Geronimus transformations. For each case, we also have an interesting class of two-diagonal matrices with closed form expressions for the eigenvalues. This extends the class of Sylvester–Kac matrices by remarkable new test matrices. We examine also the algebraic relations underlying the dual Hahn doubles, and discuss their usefulness for the construction of new finite oscillator models.
Mots-clés : Hahn polynomial; Racah polynomial; Christoffel pair; symmetric orthogonal polynomials; tridiagonal matrix; matrix eigenvalues; finite oscillator model.
@article{SIGMA_2016_12_a2,
     author = {Roy Oste},
     title = {Doubling {(Dual)} {Hahn} {Polynomials:} {Classification} and {Applications}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a2/}
}
TY  - JOUR
AU  - Roy Oste
TI  - Doubling (Dual) Hahn Polynomials: Classification and Applications
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a2/
LA  - en
ID  - SIGMA_2016_12_a2
ER  - 
%0 Journal Article
%A Roy Oste
%T Doubling (Dual) Hahn Polynomials: Classification and Applications
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a2/
%G en
%F SIGMA_2016_12_a2
Roy Oste. Doubling (Dual) Hahn Polynomials: Classification and Applications. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a2/

[1] Atakishiev N. M., Suslov S. K., “Difference analogues of the harmonic oscillator”, Theoret. and Math. Phys., 85 (1990), 1055–1062 | DOI | MR | Zbl

[2] Atakishiyev N. M., Pogosyan G. S., Vicent L. E., Wolf K. B., “Finite two-dimensional oscillator. I: The Cartesian model”, J. Phys. A: Math. Gen., 34 (2001), 9381–9398 | DOI | MR | Zbl

[3] Atakishiyev N. M., Pogosyan G. S., Wolf K. B., “Finite models of the oscillator”, Phys. Part. Nuclei, 36 (2005), 247–265

[4] Bailey W. N., Generalized hypergeometric series, Cambridge Tracts in Mathematics and Mathematical Physics, 32, Stechert-Hafner, Inc., New York, 1964 | MR

[5] Berezans'kiĭ Yu. M., Expansions in eigenfunctions of selfadjoint operators, Translations of Mathematical Monographs, 17, Amer. Math. Soc., Providence, R.I., 1968 | MR | Zbl

[6] Bevilacqua R., Bozzo E., “The Sylvester–Kac matrix space”, Linear Algebra Appl., 430 (2009), 3131–3138 | DOI | MR | Zbl

[7] Boros T., Rózsa P., “An explicit formula for singular values of the Sylvester–Kac matrix”, Linear Algebra Appl., 421 (2007), 407–416 | DOI | MR | Zbl

[8] Chihara T. S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York–London–Paris, 1978 | MR | Zbl

[9] Clement P. A., “A class of triple-diagonal matrices for test purposes”, SIAM Rev., 1 (1959), 50–52 | DOI | MR | Zbl

[10] De Bie H., Genest V. X., Tsujimoto S., Vinet L., Zhedanov A., “The Bannai–Ito algebra and some applications”, J. Phys. Conf. Ser., 597 (2015), 012001, 16 pp., arXiv: 1411.3913 | DOI

[11] Genest V. X., Vinet L., Zhedanov A., “The algebra of dual $-1$ Hahn polynomials and the Clebsch–Gordan problem of ${\mathfrak{sl}}_{-1}(2)$”, J. Math. Phys., 54 (2013), 023506, 13 pp., arXiv: 1207.4220 | DOI | MR | Zbl

[12] Higham N., The test matrix toolbox for Matlab, Numerical Analysis Report No 237, University of Manchester, 1993

[13] Ismail M. E. H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl

[14] Jafarov E. I., Stoilova N. I., Van der Jeugt J., “Finite oscillator models: the Hahn oscillator”, J. Phys. A: Math. Theor., 44 (2011), 265203, 15 pp., arXiv: 1101.5310 | DOI | Zbl

[15] Jafarov E. I., Stoilova N. I., Van der Jeugt J., “The $\mathfrak{su}(2)_\alpha$ Hahn oscillator and a discrete Fourier–Hahn transform”, J. Phys. A: Math. Theor., 44 (2011), 355205, 18 pp., arXiv: 1106.1083 | DOI | Zbl

[16] Jafarov E. I., Stoilova N. I., Van der Jeugt J., “On a pair of difference equations for the ${}_4F_3$ type orthogonal polynomials and related exactly-solvable quantum systems”, Proceedings of Lie Theory and its Applications in Physics (Varna, 2013), Springer Proceedings in Mathematics Statistics, 111, ed. V. Dobrev, Springer Japan, 2014, 291–299, arXiv: 1411.6125 | DOI | MR | Zbl

[17] Kac M., “Random walk and the theory of Brownian motion”, Amer. Math. Monthly, 54 (1947), 369–391 | DOI | MR | Zbl

[18] Klimyk A. U., “The ${\mathfrak{su}}(1,1)$-models of quantum oscillator”, Ukr. J. Phys., 51 (2006), 1019–1027

[19] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl

[20] Koelink H. T., “Spectral theory and special functions”, Laredo Lectures on Orthogonal Polynomials and Special Functions, Advances in the Theory of Special Functions and Orthogonal Polynomials, eds. R. Álvarez-Nodarse, F. Marcellán, W. Van Assche, Nova Science Publishers, Inc., Hauppauge, NY, 2004, 45–84, arXiv: math.CA/0107036 | MR | Zbl

[21] Koelink H. T., Van der Jeugt J., “Convolutions for orthogonal polynomials from Lie and quantum algebra representations”, SIAM J. Math. Anal., 29 (1998), 794–822, arXiv: q-alg/9607010 | DOI | MR | Zbl

[22] Marcellán F., Petronilho J., “Eigenproblems for tridiagonal $2$-Toeplitz matrices and quadratic polynomial mappings”, Linear Algebra Appl., 260 (1997), 169–208 | DOI | MR | Zbl

[23] Nikiforov A. F., Suslov S. K., Uvarov V. B., Classical orthogonal polynomials of a discrete variable, Springer Series in Computational Physics, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl

[24] Nomura K., Terwilliger P., “Krawtchouk polynomials, the Lie algebra $\mathfrak{sl}_2$, and Leonard pairs”, Linear Algebra Appl., 437 (2012), 345–375 | DOI | MR | Zbl

[25] Olver F. W. J., Lozier D. W., Boisvert R. F., Clark C. W. (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010 http://dlmf.nist.gov/ | MR

[26] Slater L. J., Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966 | MR | Zbl

[27] Stoilova N. I., Van der Jeugt J., “An exactly solvable spin chain related to Hahn polynomials”, SIGMA, 7 (2011), 033, 13 pp., arXiv: 1101.4469 | DOI | MR | Zbl

[28] Sylvester J. J., “Théorème sur les déterminants”, Nouvelles Ann. Math., 13 (1854), 305–305

[29] Taussky O., Todd J., “Another look at a matrix of Mark Kac”, Linear Algebra Appl., 150 (1991), 341–360 | DOI | MR | Zbl

[30] Terwilliger P., “Introduction to Leonard pairs”, J. Comput. Appl. Math., 153 (2003), 463–475 | DOI | MR | Zbl

[31] Tsujimoto S., Vinet L., Zhedanov A., “Dual $-1$ Hahn polynomials: “classical” polynomials beyond the Leonard duality”, Proc. Amer. Math. Soc., 141 (2013), 959–970, arXiv: 1108.0132 | DOI | MR | Zbl

[32] Vinet L., Zhedanov A., “A limit $q=-1$ for the big $q$-Jacobi polynomials”, Trans. Amer. Math. Soc., 364 (2012), 5491–5507, arXiv: 1011.1429 | DOI | MR | Zbl