Orthogonal Polynomials on the Unit Ball and Fourth-Order Partial Differential Equations
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The purpose of this work is to analyse a family of mutually orthogonal polynomials on the unit ball with respect to an inner product which includes an additional term on the sphere. First, we will get connection formulas relating classical multivariate orthogonal polynomials on the ball with our family of orthogonal polynomials. Then, using the representation of these polynomials in terms of spherical harmonics, algebraic and differential properties will be deduced.
Keywords: multivariate orthogonal polynomials; unit ball; partial differential equations.
@article{SIGMA_2016_12_a19,
     author = {Clotilde Mart{\'\i}nez and Miguel A. Pi\~nar},
     title = {Orthogonal {Polynomials} on the {Unit} {Ball} and {Fourth-Order} {Partial} {Differential} {Equations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a19/}
}
TY  - JOUR
AU  - Clotilde Martínez
AU  - Miguel A. Piñar
TI  - Orthogonal Polynomials on the Unit Ball and Fourth-Order Partial Differential Equations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a19/
LA  - en
ID  - SIGMA_2016_12_a19
ER  - 
%0 Journal Article
%A Clotilde Martínez
%A Miguel A. Piñar
%T Orthogonal Polynomials on the Unit Ball and Fourth-Order Partial Differential Equations
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a19/
%G en
%F SIGMA_2016_12_a19
Clotilde Martínez; Miguel A. Piñar. Orthogonal Polynomials on the Unit Ball and Fourth-Order Partial Differential Equations. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a19/

[1] Dai F., Xu Y., Approximation theory and harmonic analysis on spheres and balls, Springer Monographs in Mathematics, Springer, New York, 2013 | DOI | MR | Zbl

[2] Delgado A. M., Fernández L., Lubinsky D., Pérez T. E., Piñar M. A., Sobolev orthogonal polynomials on the unit ball via outward normal derivatives, arXiv: 1512.01064

[3] Dunkl C. F., Xu Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, 155, 2nd ed., Cambridge University Press, Cambridge, 2014 | DOI | MR | Zbl

[4] Iliev P., “Krall–Jacobi commutative algebras of partial differential operators”, J. Math. Pures Appl., 96 (2011), 446–461, arXiv: 1011.2599 | DOI | MR | Zbl

[5] Koekoek J., Koekoek R., “Differential equations for generalized Jacobi polynomials”, J. Comput. Appl. Math., 126 (2000), 1–31 | DOI | MR | Zbl

[6] Koornwinder T. H., “Orthogonal polynomials with weight function $(1-x)^{\alpha }(1+x)^{\beta }+M\delta (x+1)+N\delta (x-1)$”, Canad. Math. Bull., 27 (1984), 205–214 | DOI | MR | Zbl

[7] Krall A. M., “Orthogonal polynomials satisfying fourth order differential equations”, Proc. Roy. Soc. Edinburgh Sect. A, 87 (1981), 271–288 | DOI | MR | Zbl

[8] Krall H. L., On orthogonal polynomials satisfying a certain fourth order differential equation, Pennsylvania State College Studies, 1940, 1940, 24 pp. | MR

[9] Kwon K. H., Littlejohn L. L., Yoon G. J., “Construction of differential operators having Bochner–Krall orthogonal polynomials as eigenfunctions”, J. Math. Anal. Appl., 324 (2006), 285–303 | DOI | MR | Zbl

[10] Littlejohn L. L., “The Krall polynomials: a new class of orthogonal polynomials”, Quaestiones Math., 5 (1982), 255–265 | DOI | MR | Zbl

[11] Pérez T. E., Piñar M. A., Xu Y., “Weighted Sobolev orthogonal polynomials on the unit ball”, J. Approx. Theory, 171 (2013), 84–104, arXiv: 1211.2489 | DOI | MR

[12] Szeg{ő} G., Orthogonal polynomials, Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975 | MR