@article{SIGMA_2016_12_a19,
author = {Clotilde Mart{\'\i}nez and Miguel A. Pi\~nar},
title = {Orthogonal {Polynomials} on the {Unit} {Ball} and {Fourth-Order} {Partial} {Differential} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a19/}
}
TY - JOUR AU - Clotilde Martínez AU - Miguel A. Piñar TI - Orthogonal Polynomials on the Unit Ball and Fourth-Order Partial Differential Equations JO - Symmetry, integrability and geometry: methods and applications PY - 2016 VL - 12 UR - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a19/ LA - en ID - SIGMA_2016_12_a19 ER -
%0 Journal Article %A Clotilde Martínez %A Miguel A. Piñar %T Orthogonal Polynomials on the Unit Ball and Fourth-Order Partial Differential Equations %J Symmetry, integrability and geometry: methods and applications %D 2016 %V 12 %U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a19/ %G en %F SIGMA_2016_12_a19
Clotilde Martínez; Miguel A. Piñar. Orthogonal Polynomials on the Unit Ball and Fourth-Order Partial Differential Equations. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a19/
[1] Dai F., Xu Y., Approximation theory and harmonic analysis on spheres and balls, Springer Monographs in Mathematics, Springer, New York, 2013 | DOI | MR | Zbl
[2] Delgado A. M., Fernández L., Lubinsky D., Pérez T. E., Piñar M. A., Sobolev orthogonal polynomials on the unit ball via outward normal derivatives, arXiv: 1512.01064
[3] Dunkl C. F., Xu Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, 155, 2nd ed., Cambridge University Press, Cambridge, 2014 | DOI | MR | Zbl
[4] Iliev P., “Krall–Jacobi commutative algebras of partial differential operators”, J. Math. Pures Appl., 96 (2011), 446–461, arXiv: 1011.2599 | DOI | MR | Zbl
[5] Koekoek J., Koekoek R., “Differential equations for generalized Jacobi polynomials”, J. Comput. Appl. Math., 126 (2000), 1–31 | DOI | MR | Zbl
[6] Koornwinder T. H., “Orthogonal polynomials with weight function $(1-x)^{\alpha }(1+x)^{\beta }+M\delta (x+1)+N\delta (x-1)$”, Canad. Math. Bull., 27 (1984), 205–214 | DOI | MR | Zbl
[7] Krall A. M., “Orthogonal polynomials satisfying fourth order differential equations”, Proc. Roy. Soc. Edinburgh Sect. A, 87 (1981), 271–288 | DOI | MR | Zbl
[8] Krall H. L., On orthogonal polynomials satisfying a certain fourth order differential equation, Pennsylvania State College Studies, 1940, 1940, 24 pp. | MR
[9] Kwon K. H., Littlejohn L. L., Yoon G. J., “Construction of differential operators having Bochner–Krall orthogonal polynomials as eigenfunctions”, J. Math. Anal. Appl., 324 (2006), 285–303 | DOI | MR | Zbl
[10] Littlejohn L. L., “The Krall polynomials: a new class of orthogonal polynomials”, Quaestiones Math., 5 (1982), 255–265 | DOI | MR | Zbl
[11] Pérez T. E., Piñar M. A., Xu Y., “Weighted Sobolev orthogonal polynomials on the unit ball”, J. Approx. Theory, 171 (2013), 84–104, arXiv: 1211.2489 | DOI | MR
[12] Szeg{ő} G., Orthogonal polynomials, Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975 | MR