@article{SIGMA_2016_12_a18,
author = {Hayato Chiba},
title = {The {Third,} {Fifth} and {Sixth} {Painlev\'e} {Equations} on {Weighted} {Projective} {Spaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a18/}
}
Hayato Chiba. The Third, Fifth and Sixth Painlevé Equations on Weighted Projective Spaces. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a18/
[1] Boutroux P., “Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations différentielles du second ordre”, Ann. Sci. École Norm. Sup. (3), 30 (1913), 255–375 | MR | Zbl
[2] Chiba H., “Kovalevskaya exponents and the space of initial conditions of a quasi-homogeneous vector field”, J. Differential Equations, 259 (2015), 7681–7716, arXiv: 1407.1511 | DOI | MR | Zbl
[3] Chiba H., “The first, second and fourth Painlevé equations on weighted projective spaces”, J. Differential Equations, 260 (2016), 1263–1313, arXiv: 1311.1877 | DOI | MR | Zbl
[4] Chiba H., A compactified Riccati equation of Airy type on a weighted projective space, submitted
[5] Chow S. N., Li C. Z., Wang D., Normal forms and bifurcation of planar vector fields, Cambridge University Press, Cambridge, 1994 | DOI | MR | Zbl
[6] Costin O., Costin R. D., “Singular normal form for the Painlevé equation P$1$”, Nonlinearity, 11 (1998), 1195–1208, arXiv: math.CA/9710209 | DOI | MR | Zbl
[7] Ohyama Y., Kawamuko H., Sakai H., Okamoto K., “Studies on the Painlevé equations. V: Third Painlevé equations of special type $P_{\rm III}(D_7)$ and $P_{\rm III}(D_8)$”, J. Math. Sci. Univ. Tokyo, 13 (2006), 145–204 | MR | Zbl
[8] Sakai H., “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR | Zbl
[9] Tsuda T., Okamoto K., Sakai H., “Folding transformations of the Painlevé equations”, Math. Ann., 331 (2005), 713–738 | DOI | MR | Zbl