The Third, Fifth and Sixth Painlevé Equations on Weighted Projective Spaces
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The third, fifth and sixth Painlevé equations are studied by means of the weighted projective spaces $\mathbb C P^3(p,q,r,s)$ with suitable weights $(p,q,r,s)$ determined by the Newton polyhedrons of the equations. Singular normal forms of the equations, symplectic atlases of the spaces of initial conditions, Riccati solutions and Boutroux's coordinates are systematically studied in a unified way with the aid of the orbifold structure of $\mathbb C P^3(p,q,r,s)$ and dynamical systems theory.
Keywords: Painlevé equations; weighted projective space.
@article{SIGMA_2016_12_a18,
     author = {Hayato Chiba},
     title = {The {Third,} {Fifth} and {Sixth} {Painlev\'e} {Equations} on {Weighted} {Projective} {Spaces}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a18/}
}
TY  - JOUR
AU  - Hayato Chiba
TI  - The Third, Fifth and Sixth Painlevé Equations on Weighted Projective Spaces
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a18/
LA  - en
ID  - SIGMA_2016_12_a18
ER  - 
%0 Journal Article
%A Hayato Chiba
%T The Third, Fifth and Sixth Painlevé Equations on Weighted Projective Spaces
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a18/
%G en
%F SIGMA_2016_12_a18
Hayato Chiba. The Third, Fifth and Sixth Painlevé Equations on Weighted Projective Spaces. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a18/

[1] Boutroux P., “Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations différentielles du second ordre”, Ann. Sci. École Norm. Sup. (3), 30 (1913), 255–375 | MR | Zbl

[2] Chiba H., “Kovalevskaya exponents and the space of initial conditions of a quasi-homogeneous vector field”, J. Differential Equations, 259 (2015), 7681–7716, arXiv: 1407.1511 | DOI | MR | Zbl

[3] Chiba H., “The first, second and fourth Painlevé equations on weighted projective spaces”, J. Differential Equations, 260 (2016), 1263–1313, arXiv: 1311.1877 | DOI | MR | Zbl

[4] Chiba H., A compactified Riccati equation of Airy type on a weighted projective space, submitted

[5] Chow S. N., Li C. Z., Wang D., Normal forms and bifurcation of planar vector fields, Cambridge University Press, Cambridge, 1994 | DOI | MR | Zbl

[6] Costin O., Costin R. D., “Singular normal form for the Painlevé equation P$1$”, Nonlinearity, 11 (1998), 1195–1208, arXiv: math.CA/9710209 | DOI | MR | Zbl

[7] Ohyama Y., Kawamuko H., Sakai H., Okamoto K., “Studies on the Painlevé equations. V: Third Painlevé equations of special type $P_{\rm III}(D_7)$ and $P_{\rm III}(D_8)$”, J. Math. Sci. Univ. Tokyo, 13 (2006), 145–204 | MR | Zbl

[8] Sakai H., “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR | Zbl

[9] Tsuda T., Okamoto K., Sakai H., “Folding transformations of the Painlevé equations”, Math. Ann., 331 (2005), 713–738 | DOI | MR | Zbl