A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the existence of first integrals in nonholonomic systems with symmetry. First we define the concept of $\mathcal{M}$-cotangent lift of a vector field on a manifold $Q$ in order to unify the works [Balseiro P., Arch. Ration. Mech. Anal. 214 (2014), 453–501, arXiv:1301.1091], [Fassò F., Ramos A., Sansonetto N., Regul. Chaotic Dyn. 12 (2007), 579–588], and [Fassò F., Giacobbe A., Sansonetto N., Rep. Math. Phys. 62 (2008), 345–367]. Second, we study gauge symmetries and gauge momenta, in the cases in which there are the symmetries that satisfy the so-called vertical symmetry condition. Under such condition we can predict the number of linearly independent first integrals (that are gauge momenta). We illustrate the theory with two examples.
Keywords: nonholonomic systems; Lie group symmetries; first integrals; gauge symmetries and gauge momenta.
@article{SIGMA_2016_12_a17,
     author = {Paula Balseiro and Nicola Sansonetto},
     title = {A {Geometric} {Characterization} of {Certain} {First} {Integrals} for {Nonholonomic} {Systems} with {Symmetries}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a17/}
}
TY  - JOUR
AU  - Paula Balseiro
AU  - Nicola Sansonetto
TI  - A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a17/
LA  - en
ID  - SIGMA_2016_12_a17
ER  - 
%0 Journal Article
%A Paula Balseiro
%A Nicola Sansonetto
%T A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a17/
%G en
%F SIGMA_2016_12_a17
Paula Balseiro; Nicola Sansonetto. A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a17/

[1] Balseiro P., “The Jacobiator of nonholonomic systems and the geometry of reduced nonholonomic brackets”, Arch. Ration. Mech. Anal., 214 (2014), 453–501, arXiv: 1301.1091 | DOI | MR | Zbl

[2] Balseiro P., Fernandez O. E., “Reduction of nonholonomic systems in two stages and Hamiltonization”, Nonlinearity, 28 (2015), 2873–2912, arXiv: 1409.0456 | DOI | MR | Zbl

[3] Balseiro P., García-Naranjo L. C., “Gauge transformations, twisted Poisson brackets and Hamiltonization of nonholonomic systems”, Arch. Ration. Mech. Anal., 205 (2012), 267–310, arXiv: 1104.0880 | DOI | MR | Zbl

[4] Balseiro P., Sansonetto N., Conserved quantities and Hamiltonization, work in progress

[5] Bates L., Graumann H., MacDonnell C., “Examples of gauge conservation laws in nonholonomic systems”, Rep. Math. Phys., 37 (1996), 295–308 | DOI | MR | Zbl

[6] Bates L., Śniatycki J., “Nonholonomic reduction”, Rep. Math. Phys., 32 (1993), 99–115 | DOI | MR | Zbl

[7] Benenti S., “Meccanica dei sistemi anolonomi”, Complementi alle Lezioni di Meccanica Razionale di T. Levi–Civita e U. Amaldi, eds. E. N. M. Cirillo, G. Maschio, T. Ruggeri, G. Saccomandi, CompoMat, 2012, 213–257

[8] Bloch A. M., Nonholonomic mechanics and control, Interdisciplinary Applied Mathematics, 24, Springer-Verlag, New York, 2003 | DOI | MR | Zbl

[9] Bloch A. M., Krishnaprasad P. S., Marsden J. E., Murray R. M., “Nonholonomic mechanical systems with symmetry”, Arch. Rational Mech. Anal., 136 (1996), 21–99 | DOI | MR | Zbl

[10] Borisov A. V., Mamaev I. S., “Chaplygin's ball rolling problem is Hamiltonian”, Math. Notes, 70 (2001), 720–723 | DOI | MR | Zbl

[11] Borisov A. V., Mamaev I. S., “Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems”, Regul. Chaotic Dyn., 13 (2008), 443–490 | DOI | MR | Zbl

[12] Borisov A. V., Mamaev I. S., Kilin A. A., “Rolling of a ball on a surface. New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7 (2002), 201–219, arXiv: nlin.SI/0303024 | DOI | MR | Zbl

[13] Cantrijn F., de León M., Marrero J. C., de Diego D. M., “Reduction of nonholonomic mechanical systems with symmetries”, Rep. Math. Phys., 42 (1998), 25–45 | DOI | MR | Zbl

[14] Cortés Monforte J., Geometric, control and numerical aspects of nonholonomic systems, Lecture Notes in Math., 1793, Springer-Verlag, Berlin, 2002 | DOI | MR | Zbl

[15] Crampin M., Mestdag T., “The Cartan form for constrained Lagrangian systems and the nonholonomic Noether theorem”, Int. J. Geom. Methods Mod. Phys., 8 (2011), 897–923, arXiv: 1101.3153 | DOI | MR | Zbl

[16] Crampin M., Pirani F. A. E., Applicable differential geometry, London Mathematical Society Lecture Note Series, 59, Cambridge University Press, Cambridge, 1986 | MR | Zbl

[17] Cushman R., Duistermaat H., Śniatycki J., Geometry of nonholonomically constrained systems, Advanced Series in Nonlinear Dynamics, 26, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010 | MR | Zbl

[18] Fassò F., Giacobbe A., Sansonetto N., “Gauge conservation laws and the momentum equation in nonholonomic mechanics”, Rep. Math. Phys., 62 (2008), 345–367 | DOI | MR | Zbl

[19] Fassò F., Giacobbe A., Sansonetto N., “On the number of weakly Noetherian constants of motion of nonholonomic systems”, J. Geom. Mech., 1 (2009), 389–416 | DOI | MR | Zbl

[20] Fassò F., Giacobbe A., Sansonetto N., “Linear weakly Noetherian constants of motion are horizontal gauge momenta”, J. Geom. Mech., 4 (2012), 129–136 | DOI | MR | Zbl

[21] Fassò F., Ramos A., Sansonetto N., “The reaction-annihilator distribution and the nonholonomic Noether theorem for lifted actions”, Regul. Chaotic Dyn., 12 (2007), 579–588 | DOI | MR | Zbl

[22] Fassò F., Sansonetto N., “Conservation of ‘moving’ energy in nonholonomic systems with affine constraints and integrability of spheres on rotating surfaces”, J. Nonlinear Sci. (to appear) , arXiv: 1503.06661 | DOI | MR

[23] García-Naranjo L., “Reduction of almost Poisson brackets and Hamiltonization of the Chaplygin sphere”, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 37–60, arXiv: 0808.0854 | DOI | MR | Zbl

[24] Giachetta G., “First integrals of non-holonomic systems and their generators”, J. Phys. A: Math. Gen., 33 (2000), 5369–5389 | DOI | MR | Zbl

[25] Ibort A., de Leon M., Marrero J. C., Martin de Diego D., “Dirac brackets in constrained dynamics”, Fortschr. Phys., 47 (1999), 459–492 | 3.0.CO;2-E class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[26] Jotz M., Ratiu T. S., “Dirac structures, nonholonomic systems and reduction”, Rep. Math. Phys., 69 (2012), 5–56, arXiv: 0806.1261 | DOI | MR | Zbl

[27] Marle C.-M., “Reduction of constrained mechanical systems and stability of relative equilibria”, Comm. Math. Phys., 174 (1995), 295–318 | DOI | MR | Zbl

[28] Marle C.-M., “Various approaches to conservative and nonconservative nonholonomic systems”, Rep. Math. Phys., 42 (1998), 211–229 | DOI | MR | Zbl

[29] Marsden J. E., Ratiu T. S., Introduction to mechanics and symmetry. A basic exposition of classical mechanical systems, Texts in Applied Mathematics, 17, 2nd ed., Springer-Verlag, New York, 1999 | DOI | MR | Zbl

[30] Neimark Ju. I., Fufaev N. A., Dynamics of nonholonomic systems, Translations of Mathematical Monographs, 33, Amer. Math. Soc., Providence, RI, 1972 | Zbl

[31] Ortega J.-P., Ratiu T. S., Momentum maps and Hamiltonian reduction, Progress in Mathematics, 222, Birkhäuser Boston, Inc., Boston, MA, 2004 | DOI | MR | Zbl

[32] Pars L. A., A treatise on analytical dynamics, Heinemann Educational Books Ltd., London, 1968 | DOI

[33] Śniatycki J., “Nonholonomic Noether theorem and reduction of symmetries”, Rep. Math. Phys., 42 (1998), 5–23 | DOI | MR

[34] van der Schaft A. J., Maschke B. M., “On the Hamiltonian formulation of nonholonomic mechanical systems”, Rep. Math. Phys., 34 (1994), 225–233 | DOI | MR | Zbl

[35] Zenkov D. V., “Linear conservation laws of nonholonomic systems with symmetry”, Discrete Contin. Dyn. Syst., 2003, suppl., 967–976 | MR | Zbl