@article{SIGMA_2016_12_a15,
author = {Farzad Fathizadeh and Olivier Gabriel},
title = {On the {Chern{\textendash}Gauss{\textendash}Bonnet} {Theorem} and {Conformally} {Twisted} {Spectral} {Triples} for $C^*${-Dynamical} {Systems}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a15/}
}
TY - JOUR AU - Farzad Fathizadeh AU - Olivier Gabriel TI - On the Chern–Gauss–Bonnet Theorem and Conformally Twisted Spectral Triples for $C^*$-Dynamical Systems JO - Symmetry, integrability and geometry: methods and applications PY - 2016 VL - 12 UR - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a15/ LA - en ID - SIGMA_2016_12_a15 ER -
%0 Journal Article %A Farzad Fathizadeh %A Olivier Gabriel %T On the Chern–Gauss–Bonnet Theorem and Conformally Twisted Spectral Triples for $C^*$-Dynamical Systems %J Symmetry, integrability and geometry: methods and applications %D 2016 %V 12 %U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a15/ %G en %F SIGMA_2016_12_a15
Farzad Fathizadeh; Olivier Gabriel. On the Chern–Gauss–Bonnet Theorem and Conformally Twisted Spectral Triples for $C^*$-Dynamical Systems. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a15/
[1] Albeverio S., Høegh-Krohn R., “Ergodic actions by compact groups on $C^{\ast} $-algebras”, Math. Z., 174 (1980), 1–17 | DOI | MR | Zbl
[2] Atiyah M., Bott R., Patodi V. K., “On the heat equation and the index theorem”, Invent. Math., 19 (1973), 279–330 | DOI | MR | Zbl
[3] Bhuyain T. A., Marcolli M., “The Ricci flow on noncommutative two-tori”, Lett. Math. Phys., 101 (2012), 173–194, arXiv: 1107.4788 | DOI | MR | Zbl
[4] Branson T. P., Ørsted B., “Conformal indices of Riemannian manifolds”, Compositio Math., 60 (1986), 261–293 | MR | Zbl
[5] Bratteli O., Derivations, dissipations and group actions on $C^*$-algebras, Lecture Notes in Math., 1229, Springer-Verlag, Berlin, 1986 | DOI | MR
[6] Carey A. L., Neshveyev S., Nest R., Rennie A., “Twisted cyclic theory, equivariant $KK$-theory and {KMS} states”, J. Reine Angew. Math., 650 (2011), 161–191, arXiv: 0808.3029 | DOI | MR | Zbl
[7] Carey A. L., Phillips J., Rennie A., “Semifinite spectral triples associated with graph $C^\ast$-algebras”, Traces in Number Theory, Geometry and Quantum Fields, Aspects Math., E38, Friedr. Vieweg, Wiesbaden, 2008, 35–56, arXiv: 0707.3853 | MR
[8] Carey A. L., Phillips J., Rennie A., “Twisted cyclic theory and an index theory for the gauge invariant KMS state on the Cuntz algebra $O_n$”, J. K-Theory, 6 (2010), 339–380, arXiv: 0801.4605 | DOI | MR | Zbl
[9] Chamseddine A. H., Connes A., “The spectral action principle”, Comm. Math. Phys., 186 (1997), 731–750, arXiv: hep-th/9606001 | DOI | MR | Zbl
[10] Chamseddine A. H., Connes A., “Scale invariance in the spectral action”, J. Math. Phys., 47 (2006), 063504, 19 pp., arXiv: hep-th/0512169 | DOI | MR | Zbl
[11] Cohen P. B., Connes A., Conformal geometry of the irrational rotation algebra, Preprint MPI, 1992
[12] Connes A., “$C^{\ast}$ algèbres et géométrie différentielle”, C. R. Acad. Sci. Paris Sér. A-B, 290 (1980), A599–A604, arXiv: hep-th/0101093 | MR
[13] Connes A., “Noncommutative differential geometry”, Inst. Hautes Études Sci. Publ. Math., 62, 1985, 257–360 | MR
[14] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl
[15] Connes A., Moscovici H., “The local index formula in noncommutative geometry”, Geom. Funct. Anal., 5 (1995), 174–243 | DOI | MR | Zbl
[16] Connes A., Moscovici H., “Type III and spectral triples”, Traces in number theory, geometry and quantum fields, Aspects Math., E38, Friedr. Vieweg, Wiesbaden, 2008, 57–71, arXiv: math.OA/0609703 | MR
[17] Connes A., Moscovici H., “Modular curvature for noncommutative two-tori”, J. Amer. Math. Soc., 27 (2014), 639–684, arXiv: 1110.3500 | DOI | MR | Zbl
[18] Connes A., Tretkoff P., “The Gauss–Bonnet theorem for the noncommutative two torus”, Noncommutative Geometry, Arithmetic, and Related Topics, Johns Hopkins Univ. Press, Baltimore, MD, 2011, 141–158, arXiv: 0910.0188 | MR | Zbl
[19] Cuntz J., “Simple $C^*$-algebras generated by isometries”, Comm. Math. Phys., 57 (1977), 173–185 | DOI | MR | Zbl
[20] D{a̧}browski L., Sitarz A., “An asymmetric noncommutative torus”, SIGMA, 11 (2015), 075, 11 pp., arXiv: 1406.4645 | DOI | MR
[21] Devastato A., Martinetti P., Twisted spectral triple for the standard model and spontaneous breaking of the grand symmetry, arXiv: 1411.1320
[22] Fathizadeh F., “On the scalar curvature for the noncommutative four torus”, J. Math. Phys., 56 (2015), 062303, 14 pp., arXiv: 1410.8705 | DOI | MR | Zbl
[23] Fathizadeh F., Khalkhali M., “The algebra of formal twisted pseudodifferential symbols and a noncommutative residue”, Lett. Math. Phys., 94 (2010), 41–61, arXiv: 0810.0484 | DOI | MR
[24] Fathizadeh F., Khalkhali M., “Twisted spectral triples and Connes' character formula”, Perspectives on Noncommutative Geometry, Fields Inst. Commun., 61, Amer. Math. Soc., Providence, RI, 2011, 79–101, arXiv: 1106.6127 | MR | Zbl
[25] Fathizadeh F., Khalkhali M., J. Noncommut. Geom., 6 (2012), The Gauss–Bonnet theorem for noncommutative two tori with a general conformal structure, arXiv: 1005.4947 | DOI | MR
[26] Fathizadeh F., Khalkhali M., “Scalar curvature for the noncommutative two torus”, J. Noncommut. Geom., 7 (2013), 1145–1183, arXiv: 1110.3511 | DOI | MR | Zbl
[27] Fathizadeh F., Khalkhali M., “Weyl's law and Connes' trace theorem for noncommutative two tori”, Lett. Math. Phys., 103 (2013), 1–18, arXiv: 1111.1358 | DOI | MR | Zbl
[28] Fathizadeh F., Khalkhali M., “Scalar curvature for noncommutative four-tori”, J. Noncommut. Geom., 9 (2015), 473–503, arXiv: 1301.6135 | DOI | MR | Zbl
[29] Fathizadeh F., Wong M. W., “Noncommutative residues for pseudo-differential operators on the noncommutative two-torus”, J. Pseudo-Differ. Oper. Appl., 2 (2011), 289–302 | DOI | MR | Zbl
[30] Gabriel O., Grensing M., Ergodic actions and spectral triples, arXiv: 1302.0426
[31] Gilkey P. B., Invariance theory, the heat equation, and the Atiyah–Singer index theorem, Mathematics Lecture Series, 11, Publish or Perish, Inc., Wilmington, DE, 1984 | MR | Zbl
[32] Gracia-Bondía J. M., Várilly J. C., Figueroa H., Elements of noncommutative geometry, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Boston, Inc., Boston, MA, 2001 | DOI | MR | Zbl
[33] Greenfield M., Marcolli M., Teh K., “Twisted spectral triples and quantum statistical mechanical systems”, p-Adic Numbers Ultrametric Anal. Appl., 6 (2014), 81–104 | DOI | MR | Zbl
[34] Higson N., “The residue index theorem of Connes and Moscovici”, Surveys in noncommutative geometry, Clay Math. Proc., 6, Amer. Math. Soc., Providence, RI, 2006, 71–126 | MR | Zbl
[35] Høegh-Krohn R., Landstad M. B., Størmer E., “Compact ergodic groups of automorphisms”, Ann. of Math., 114 (1981), 75–86 | DOI | MR
[36] Iochum B., Masson T., “Crossed product extensions of spectral triples”, J. Noncommut. Geom. (to appear) , arXiv: 1406.4642
[37] Kaad J., On modular semifinite index theory, arXiv: 1111.6546
[38] Kaad J., Senior R., “A twisted spectral triple for quantum ${\rm SU}(2)$”, J. Geom. Phys., 62 (2012), 731–739, arXiv: 1109.2326 | DOI | MR | Zbl
[39] Kato T., Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995 | DOI | MR | Zbl
[40] Khalkhali M., Landi G., van Suijlekom W. D., “Holomorphic structures on the quantum projective line”, Int. Math. Res. Not., 2011 (2011), 851–884, arXiv: 0907.0154 | DOI | MR | Zbl
[41] Knapp A. W., Lie groups, Lie algebras, and cohomology, Mathematical Notes, 34, Princeton University Press, Princeton, NJ, 1988 | MR | Zbl
[42] Krýsl S., “Hodge theory for elliptic complexes over unital $C^*$-algebras”, Ann. Global Anal. Geom., 45 (2014), 197–210, arXiv: 1309.4560 | DOI | MR | Zbl
[43] Krýsl S., “Hodge theory for complexes over $C^*$-algebras with an application to $A$-ellipticity”, Ann. Global Anal. Geom., 47 (2015), 359–372, arXiv: 1309.4560 | DOI | MR | Zbl
[44] Krýsl S., “Elliptic complexes over $C^*$-algebras of compact operators”, J. Geom. Phys., 101 (2016), 27–37, arXiv: 1506.06244 | DOI | MR
[45] Lesch M., Moscovici H., Modular curvature and Morita equivalence, arXiv: 1505.00964
[46] Lord S., Sukochev F., Zanin D., Singular traces. Theory and applications, De Gruyter Studies in Mathematics, 46, De Gruyter, Berlin, 2013 | MR | Zbl
[47] Moscovici H., “Local index formula and twisted spectral triples”, Quanta of Maths, Clay Math. Proc., 11, Amer. Math. Soc., Providence, RI, 2010, 465–500, arXiv: 0902.0835 | MR | Zbl
[48] Paterson A. L. T., “Contractive spectral triples for crossed products”, Math. Scand., 114 (2014), 275–298, arXiv: 1204.4404 | MR | Zbl
[49] Ponge R., Wang H., “Noncommutative geometry and conformal geometry. III: Vafa–Witten inequality and Poincaré duality”, Adv. Math., 272 (2015), 761–819, arXiv: 1310.6138 | DOI | MR | Zbl
[50] Reed M., Simon B., Methods of modern mathematical physics, v. I, Functional analysis, Academic Press, Inc., New York, 1980 | MR | Zbl
[51] Reed M., Simon B., Methods of modern mathematical physics, v. II, Fourier analysis, selfadjointness, Academic Press, Inc., New York, 1975 | MR | Zbl
[52] Rieffel M. A., “Metrics on states from actions of compact groups”, Doc. Math., 3 (1998), 215–229, arXiv: math.OA/9807084 | MR
[53] Simon B., Trace ideals and their applications, Mathematical Surveys and Monographs, 120, 2nd ed., Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl
[54] Størmer E., “Spectra of ergodic transformations”, J. Funct. Anal., 15 (1974), 202–215 | DOI | MR
[55] Wahl C., “Index theory for actions of compact Lie groups on $C^*$-algebras”, J. Operator Theory, 63 (2010), 217–242, arXiv: 0707.3207 | MR | Zbl
[56] Wassermann A., “Ergodic actions of compact groups on operator algebras. I: General theory”, Ann. of Math., 130 (1989), 273–319 | DOI | MR | Zbl
[57] Wassermann A., “Ergodic actions of compact groups on operator algebras. II: Classification of full multiplicity ergodic actions”, Canad. J. Math., 40 (1988), 1482–1527 | DOI | MR
[58] Wassermann A., “Ergodic actions of compact groups on operator algebras. III: Classification for ${\rm SU}(2)$”, Invent. Math., 93 (1988), 309–354 | DOI | MR | Zbl
[59] Wodzicki M., “Local invariants of spectral asymmetry”, Invent. Math., 75 (1984), 143–177 | DOI | MR
[60] Wodzicki M., “Noncommutative residue. I: Fundamentals”, $K$-Theory, Arithmetic and Geometry (Moscow, 1984–1986), Lecture Notes in Math., 1289, Springer, Berlin, 1987, 320–399 | DOI | MR