@article{SIGMA_2016_12_a13,
author = {Liqiang Cai and Yunhe Sheng},
title = {Hom-Big {Brackets:} {Theory} and {Applications}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a13/}
}
Liqiang Cai; Yunhe Sheng. Hom-Big Brackets: Theory and Applications. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a13/
[1] Ammar F., Ejbehi Z., Makhlouf A., “Cohomology and deformations of Hom-algebras”, J. Lie Theory, 21 (2011), 813–836, arXiv: 1005.0456 | MR | Zbl
[2] Antunes P., Laurent-Gengoux C., Nunes da Costa J. M., “Hierarchies and compatibility on Courant algebroids”, Pacific J. Math., 261 (2013), 1–32, arXiv: 1111.0800 | DOI | MR | Zbl
[3] Azimi M. J., Laurent-Gengoux C., Nunes da Costa J. M., “Nijenhuis forms on $L_\infty$-algebras and Poisson geometry”, Differential Geom. Appl., 38 (2015), 69–113, arXiv: 1308.6119 | DOI | MR | Zbl
[4] Cariñena J. F., Grabowski J., Marmo G., “Contractions: Nijenhuis and Saletan tensors for general algebraic structures”, J. Phys. A: Math. Gen., 34 (2001), 3769–3789, arXiv: math.DG/0103103 | DOI | MR | Zbl
[5] Cariñena J. F., Grabowski J., Marmo G., “Courant algebroid and Lie bialgebroid contractions”, J. Phys. A: Math. Gen., 37 (2004), 5189–5202, arXiv: math.DG/0402020 | DOI | MR | Zbl
[6] Chen Y., Zhang L., “Hom-$\mathcal{O}$-operators and Hom–Yang–Baxter equations”, Adv. Math. Phys., 2015 (2015), 823756, 11 pp. | DOI | MR | Zbl
[7] Dorfman I., Dirac structures and integrability of nonlinear evolution equations, Nonlinear Science: Theory and Applications, John Wiley Sons, Ltd., Chichester, 1993 | MR
[8] Drinfel'd V. G., “Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of classical Yang–Baxter equations”, Soviet Math. Doklady, 27 (1983), 68–71 | MR | Zbl
[9] Grabowski J., “Courant–Nijenhuis tensors and generalized geometries”, Groups, Geometry and Physics, Monogr. Real Acad. Ci. Exact. Fís.-Quím. Nat. Zaragoza, 29, Acad. Cienc. Exact. Fís. Quím. Nat. Zaragoza, Zaragoza, 2006, 101–112, arXiv: math.DG/0601761 | MR | Zbl
[10] Hartwig J. T., Larsson D., Silvestrov S. D., “Deformations of Lie algebras using $\sigma$-derivations”, J. Algebra, 295 (2006), 314–361, arXiv: math.QA/0408064 | DOI | MR | Zbl
[11] Kosmann-Schwarzbach Y., “Jacobian quasi-bialgebras and quasi-Poisson Lie groups”, Mathematical Aspects of Classical Field Theory (Seattle, WA, 1991), Contemp. Math., 132, Amer. Math. Soc., Providence, RI, 1992, 459–489 | DOI | MR
[12] Kosmann-Schwarzbach Y., “Quasi, twisted, and all that $\ldots$ in Poisson geometry and Lie algebroid theory”, The Breadth of Symplectic and Poisson Geometry, Progr. Math., 232, Birkhäuser Boston, Boston, MA, 2005, 363–389, arXiv: math.SG/0310359 | DOI | MR | Zbl
[13] Kosmann-Schwarzbach Y., “Nijenhuis structures on Courant algebroids”, Bull. Braz. Math. Soc. (N.S.), 42 (2011), 625–649, arXiv: 1102.1410 | DOI | MR | Zbl
[14] Kosmann-Schwarzbach Y., “Poisson and symplectic functions in Lie algebroid theory”, Higher Structures in Geometry and Physics, Progr. Math., 287, Birkhäuser/Springer, New York, 2011, 243–268, arXiv: 0711.2043 | DOI | MR | Zbl
[15] Kosmann-Schwarzbach Y., Magri F., “Poisson–Nijenhuis structures”, Ann. Inst. H. Poincaré Phys. Théor., 53 (1990), 35–81 | MR | Zbl
[16] Kosmann-Schwarzbach Y., Rubtsov V., “Compatible structures on Lie algebroids and Monge–Ampère operators”, Acta Appl. Math., 109 (2010), 101–135, arXiv: 0812.4838 | DOI | MR | Zbl
[17] Kostant B., Sternberg S., “Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras”, Ann. Physics, 176 (1987), 49–113 | DOI | MR | Zbl
[18] Kravchenko O., “Strongly homotopy Lie bialgebras and Lie quasi-bialgebras”, Lett. Math. Phys., 81 (2007), 19–40, arXiv: math.QA/0601301 | DOI | MR | Zbl
[19] Kupershmidt B. A., “What a classical $r$-matrix really is”, J. Nonlinear Math. Phys., 6 (1999), 448–488, arXiv: math.QA/9910188 | DOI | MR | Zbl
[20] Larsson D., Silvestrov S. D., “Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities”, J. Algebra, 288 (2005), 321–344, arXiv: math.RA/0408061 | DOI | MR | Zbl
[21] Larsson D., Silvestrov S. D., “Quasi-Lie algebras”, Noncommutative Geometry and Representation Theory in Mathematical Physics, Contemp. Math., 391, Amer. Math. Soc., Providence, RI, 2005, 241–248 | DOI | MR | Zbl
[22] Laurent-Gengoux C., Teles J., “Hom–Lie algebroids”, J. Geom. Phys., 68 (2013), 69–75, arXiv: 1211.2263 | DOI | MR | Zbl
[23] Lecomte P. B. A., Roger C., “Modules et cohomologies des bigèbres de Lie”, C. R. Acad. Sci. Paris Sér. I Math., 310 (1990), 405–410 | MR | Zbl
[24] Makhlouf A., Silvestrov S. D., “Hom-algebra structures”, J. Gen. Lie Theory Appl., 2 (2008), 51–64, arXiv: math.RA/0609501 | DOI | MR | Zbl
[25] Makhlouf A., Silvestrov S. D., “Notes on 1-parameter formal deformations of Hom-associative and Hom–Lie algebras”, Forum Math., 22 (2010), 715–739, arXiv: 0712.3130 | DOI | MR | Zbl
[26] Nijenhuis A., Richardson R. W. (Jr.), “Cohomology and deformations in graded Lie algebras”, Bull. Amer. Math. Soc., 72 (1966), 1–29 | DOI | MR | Zbl
[27] Roytenberg D., “Quasi-Lie bialgebroids and twisted Poisson manifolds”, Lett. Math. Phys., 61 (2002), 123–137, arXiv: math.QA/0112152 | DOI | MR | Zbl
[28] Sheng Y., “Representations of hom-Lie algebras”, Algebr. Represent. Theory, 15 (2012), 1081–1098, arXiv: 1005.0140 | DOI | MR | Zbl
[29] Sheng Y., Bai C., “A new approach to hom-Lie bialgebras”, J. Algebra, 399 (2014), 232–250, arXiv: 1304.1954 | DOI | MR | Zbl
[30] Sheng Y., Xiong Z., “On Hom–Lie algebras”, Linear Multilinear Algebra, 63 (2015), 2379–2395, arXiv: 1411.6839 | DOI | MR | Zbl
[31] Yau D., “The Hom–Yang–Baxter equation, Hom–Lie algebras, and quasi-triangular bialgebras”, J. Phys. A: Math. Theor., 42 (2009), 165202, 12 pp., arXiv: 0903.0585 | DOI | MR | Zbl
[32] Yau D., “Hom-quantum groups. I: Quasi-triangular Hom-bialgebras”, J. Phys. A: Math. Theor., 45 (2012), 065203, 23 pp., arXiv: 0906.4128 | DOI | MR | Zbl
[33] Yau D., “The classical Hom–Yang–Baxter equation and Hom–Lie bialgebras”, Int. Electron. J. Algebra, 17 (2015), 11–45, arXiv: 0905.1890 | MR | Zbl