@article{SIGMA_2016_12_a116,
author = {Krishan Rajaratnam and Raymond G. McLenaghan and Carlos Valero},
title = {Orthogonal {Separation} of the {Hamilton{\textendash}Jacobi} {Equation} on {Spaces} of {Constant} {Curvature}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a116/}
}
TY - JOUR AU - Krishan Rajaratnam AU - Raymond G. McLenaghan AU - Carlos Valero TI - Orthogonal Separation of the Hamilton–Jacobi Equation on Spaces of Constant Curvature JO - Symmetry, integrability and geometry: methods and applications PY - 2016 VL - 12 UR - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a116/ LA - en ID - SIGMA_2016_12_a116 ER -
%0 Journal Article %A Krishan Rajaratnam %A Raymond G. McLenaghan %A Carlos Valero %T Orthogonal Separation of the Hamilton–Jacobi Equation on Spaces of Constant Curvature %J Symmetry, integrability and geometry: methods and applications %D 2016 %V 12 %U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a116/ %G en %F SIGMA_2016_12_a116
Krishan Rajaratnam; Raymond G. McLenaghan; Carlos Valero. Orthogonal Separation of the Hamilton–Jacobi Equation on Spaces of Constant Curvature. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a116/
[1] Benenti S., “Inertia tensors and Stäckel systems in the Euclidean spaces”, Rend. Sem. Mat. Univ. Politec. Torino, 50 (1992), 315–341 | MR | Zbl
[2] Benenti S., “Intrinsic characterization of the variable separation in the Hamilton–Jacobi equation”, J. Math. Phys., 38 (1997), 6578–6602 | DOI | MR | Zbl
[3] Benenti S., “Special symmetric two-tensors, equivalent dynamical systems, cofactor and bi-cofactor systems”, Acta Appl. Math., 87 (2005), 33–91 | DOI | MR | Zbl
[4] Benenti S., “Separability in Riemannian manifolds”, SIGMA, 12 (2016), 013, 21 pp., arXiv: 1512.07833 | DOI | MR | Zbl
[5] Benenti S., Chanu C., Rastelli G., “The super-separability of the three-body inverse-square Calogero system”, J. Math. Phys., 41 (2000), 4654–4678 | DOI | MR | Zbl
[6] Calogero F., “Solution of a three-body problem in one dimension”, J. Math. Phys., 10 (1969), 2191–2196 | DOI
[7] Cariñena J. F., Rañada M. F., Santander M., Sanz-Gil T., “Separable potentials and a triality in two-dimensional spaces of constant curvature”, J. Nonlinear Math. Phys., 12 (2005), 230–252 | DOI | MR | Zbl
[8] Chanu C., Degiovanni L., McLenaghan R. G., “Geometrical classification of Killing tensors on bidimensional flat manifolds”, J. Math. Phys., 47 (2006), 073506, 20 pp., arXiv: math.DG/0512324 | DOI | MR | Zbl
[9] Cochran C. M., McLenaghan R. G., Smirnov R. G., “Equivalence problem for the orthogonal webs on the 3-sphere”, J. Math. Phys., 52 (2011), 053509, 22 pp., arXiv: 1009.4244 | DOI | MR | Zbl
[10] Crampin M., “Conformal {K}illing tensors with vanishing torsion and the separation of variables in the Hamilton–Jacobi equation”, Differential Geom. Appl., 18 (2003), 87–102 | DOI | MR | Zbl
[11] Crampin M., “On the orthogonal separation of variables in the Hamilton–Jacobi equation for geodesics in a Riemannian manifold”, Differential Geometry and its Applications, Matfyzpress, Prague, 2005, 453–466 | MR | Zbl
[12] Eisenhart L. P., “Separable systems of Stäckel”, Ann. of Math., 35 (1934), 284–305 | DOI | MR
[13] Haantjes J., “On $X_m$-forming sets of eigenvectors”, Indag. Math., 58 (1955), 158–162 | DOI | MR | Zbl
[14] Horwood J. T., “On the theory of algebraic invariants of vector spaces of Killing tensors”, J. Geom. Phys., 58 (2008), 487–501 | DOI | MR | Zbl
[15] Horwood J. T., McLenaghan R. G., “Transformation to pseudo-Cartesian coordinates in locally flat pseudo-Riemannian spaces”, J. Geom. Phys., 57 (2007), 1435–1440 | DOI | MR | Zbl
[16] Horwood J. T., McLenaghan R. G., “Orthogonal separation of variables for the Hamilton–Jacobi and wave equations in three-dimensional Minkowski space”, J. Math. Phys., 49 (2008), 023501, 48 pp. | DOI | MR | Zbl
[17] Horwood J. T., McLenaghan R. G., Smirnov R. G., “Invariant classification of orthogonally separable Hamiltonian systems in Euclidean space”, Comm. Math. Phys., 259 (2005), 679–709, arXiv: math-ph/0605023 | DOI | MR | Zbl
[18] Horwood J. T., McLenaghan R. G., Smirnov R. G., “Hamilton–Jacobi theory in three-dimensional Minkowski space via Cartan geometry”, J. Math. Phys., 50 (2009), 053507, 41 pp. | DOI | MR | Zbl
[19] Kalnins E. G., “On the separation of variables for the Laplace equation $\Delta \Psi +K^{2}\Psi =0$ in two- and three-dimensional Minkowski space”, SIAM J. Math. Anal., 6 (1975), 340–374 | DOI | MR | Zbl
[20] Kalnins E. G., Separation of variables for Riemannian spaces of constant curvature, Pitman Monographs and Surveys in Pure and Applied Mathematics, 28, Longman Scientific Technical, Harlow; John Wiley Sons, Inc., New York, 1986 | MR | Zbl
[21] Kalnins E. G., Miller W. (Jr.), Separation of variables on $n$-dimensional Riemannian manifolds. II. The $n$-dimensional hyperboloid $\mathbf H_n$, University of Waikato Research Report, No 103, 1982
[22] Kalnins E. G., Miller W. (Jr.), “Separation of variables on $n$-dimensional Riemannian manifolds. I. The $n$-sphere $S_n$ and Euclidean $n$-space $R^n$”, J. Math. Phys., 27 (1986), 1721–1736 | DOI | MR | Zbl
[23] Kalnins E. G., Miller W. (Jr.), Reid G. J., “Separation of variables for complex Riemannian spaces of constant curvature. I. Orthogonal separable coordinates for ${\rm S}_{nC}$ and ${\rm E}_{nC}$”, Proc. Roy. Soc. London Ser. A, 394 (1984), 183–206 | DOI | MR | Zbl
[24] Levi-Civita T., “Sulla integrazione della equazione di Hamilton–Jacobi per separazione di variabili”, Math. Ann., 59 (1904), 383–397 | DOI | MR | Zbl
[25] McLenaghan R. G., Smirnov R. G., “Intrinsic characterizations of orthogonal separability for natural Hamiltonians with scalar potentials on pseudo-Riemannian spaces”, J. Nonlinear Math. Phys., 9:1 (2002), 140–151 | DOI | MR
[26] McLenaghan R. G., Smirnov R. G., The D., “Group invariant classification of separable Hamiltonian systems in the Euclidean plane and the $\rm O(4)$-symmetric Yang–Mills theories of Yatsun”, J. Math. Phys., 43 (2002), 1422–1440 | DOI | MR | Zbl
[27] McLenaghan R. G., Smirnov R. G., The D., “An extension of the classical theory of algebraic invariants to pseudo-Riemannian geometry and Hamiltonian mechanics”, J. Math. Phys., 45 (2004), 1079–1120 | DOI | MR | Zbl
[28] Morosi C., Tondo G., “Quasi-bi-Hamiltonian systems and separability”, J. Phys. A: Math. Gen., 30 (1997), 2799–2806, arXiv: solv-int/9702006 | DOI | MR | Zbl
[29] Nijenhuis A., “$X_{n-1}$-forming sets of eigenvectors”, Nederl. Akad. Wetensch. Proc. Ser. A., 54 (1951), 200–212 | DOI | MR | Zbl
[30] Nölker S., “Isometric immersions of warped products”, Differential Geom. Appl., 6 (1996), 1–30 | DOI | MR
[31] Olevskiĭ M. N., “Triorthogonal systems in spaces of constant curvature in which the equation $\Delta_2u+\lambda u=0$ allows a complete separation of variables”, Mat. Sb., 27 (1950), 379–426 | MR | Zbl
[32] O'Neill B., Semi-Riemannian geometry: with applications to relativity, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983 | MR | Zbl
[33] Petersen P., Riemannian geometry, Graduate Texts in Mathematics, 171, 2nd ed., Springer, New York, 2006 | DOI | MR | Zbl
[34] Rajaratnam K., Orthogonal separation of the Hamilton–Jacobi equation on spaces of constant curvature, Master's Thesis, University of Waterloo, 2014 http://hdl.handle.net/10012/8350 | MR
[35] Rajaratnam K., McLenaghan R. G., “Classification of Hamilton–Jacobi separation in orthogonal coordinates with diagonal curvature”, J. Math. Phys., 55 (2014), 083521, 16 pp., arXiv: 1404.2565 | DOI | MR | Zbl
[36] Rajaratnam K., McLenaghan R. G., “Killing tensors, warped products and the orthogonal separation of the Hamilton–Jacobi equation”, J. Math. Phys., 55 (2014), 013505, 27 pp., arXiv: 1404.3161 | DOI | MR | Zbl
[37] Rauch-Wojciechowski S., Waksjö C., “What an effective criterion of separability says about the Calogero type systems”, J. Nonlinear Math. Phys., 12:1 (2005), 535–547 | DOI | MR
[38] Schöbel K., “The variety of integrable Killing tensors on the 3-sphere”, SIGMA, 10 (2014), 080, 48 pp., arXiv: 1205.6227 | DOI | MR | Zbl
[39] Stäckel P., “Ueber die Bewegung eines Punktes in einer $n$-fachen Mannigfaltigkeit”, Math. Ann., 42 (1893), 537–563 | DOI | MR
[40] Thompson G., “Killing tensors in spaces of constant curvature”, J. Math. Phys., 27 (1986), 2693–2699 | DOI | MR | Zbl
[41] Waksjö C., Rauch-Wojciechowski S., “How to find separation coordinates for the Hamilton–Jacobi equation: a criterion of separability for natural Hamiltonian systems”, Math. Phys. Anal. Geom., 6 (2003), 301–348 | DOI | MR | Zbl