The Quaternions and Bott Periodicity Are Quantum Hamiltonian Reductions
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the Morita equivalences $\mathrm{Cliff}(4) \simeq {\mathbb H}$, $\mathrm{Cliff}(7) \simeq \mathrm{Cliff}(-1)$, and $\mathrm{Cliff}(8) \simeq {\mathbb R}$ arise from quantizing the Hamiltonian reductions ${\mathbb R}^{0|4} // \mathrm{Spin}(3)$, ${\mathbb R}^{0|7} // G_2$, and ${\mathbb R}^{0|8} // \mathrm{Spin}(7)$, respectively.
Keywords: Clifford algebras; quaternions; Bott periodicity; Morita equivalence; quantum Hamiltonian reduction; super symplectic geometry.
@article{SIGMA_2016_12_a115,
     author = {Theo Johnson-Freyd},
     title = {The {Quaternions} and {Bott} {Periodicity} {Are} {Quantum} {Hamiltonian} {Reductions}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a115/}
}
TY  - JOUR
AU  - Theo Johnson-Freyd
TI  - The Quaternions and Bott Periodicity Are Quantum Hamiltonian Reductions
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a115/
LA  - en
ID  - SIGMA_2016_12_a115
ER  - 
%0 Journal Article
%A Theo Johnson-Freyd
%T The Quaternions and Bott Periodicity Are Quantum Hamiltonian Reductions
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a115/
%G en
%F SIGMA_2016_12_a115
Theo Johnson-Freyd. The Quaternions and Bott Periodicity Are Quantum Hamiltonian Reductions. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a115/

[1] Arenas R., Constructing a matrix representation of the Lie group $G_2$, Senior Thesis, Harvey Mudd College, 2005 https://www.math.hmc.edu/seniorthesis/archives/2005/rarenas/rarenas-2005-thesis.pdf

[2] Bryant R. L., “Some remarks on $G_2$-structures”, Proceedings of Gökova Geometry-Topology Conference 2005, Gökova Geometry/Topology Conference (GGT) (Gökova, 2006), 75–109, arXiv: math.DG/0305124 | MR | Zbl

[3] Cartan E., “Nombres complexes (Exposé, d'après l'article allemand de E. Study)”, Encyclopédie des sciences mathématiques pures et appliquées, Chap. 5, v. I, ed. J. Molk, Gauthier-Villars, 1908, 329–468

[4] Cattaneo A. S., Zambon M., “A supergeometric approach to Poisson reduction”, Comm. Math. Phys., 318 (2013), 675–716, arXiv: 1009.0948 | DOI | MR | Zbl

[5] Deligne P., Morgan J. W., “Notes on supersymmetry (following Joseph Bernstein)”, Quantum Fields and Strings: a Course for Mathematicians (Princeton, NJ, 1996/1997), v. 1, 2, Amer. Math. Soc., Providence, RI, 1999, 41–97 | MR | Zbl

[6] Harvey R., Lawson H. B. (Jr.), “Calibrated geometries”, Acta Math., 148 (1982), 47–157 | DOI | MR | Zbl

[7] Marsden J., Weinstein A., “Reduction of symplectic manifolds with symmetry”, Rep. Math. Phys., 5 (1974), 121–130 | DOI | MR | Zbl

[8] Mehta R. A., “On homotopy Poisson actions and reduction of symplectic $Q$-manifolds”, Differential Geom. Appl., 29 (2011), 319–328, arXiv: 1009.1280 | DOI | MR | Zbl