@article{SIGMA_2016_12_a114,
author = {Eduardo Garc{\'\i}a-Tora\~no Andr\'es and Tom Mestdag},
title = {Un-Reduction of {Systems} of {Second-Order} {Ordinary} {Differential} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a114/}
}
TY - JOUR AU - Eduardo García-Toraño Andrés AU - Tom Mestdag TI - Un-Reduction of Systems of Second-Order Ordinary Differential Equations JO - Symmetry, integrability and geometry: methods and applications PY - 2016 VL - 12 UR - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a114/ LA - en ID - SIGMA_2016_12_a114 ER -
%0 Journal Article %A Eduardo García-Toraño Andrés %A Tom Mestdag %T Un-Reduction of Systems of Second-Order Ordinary Differential Equations %J Symmetry, integrability and geometry: methods and applications %D 2016 %V 12 %U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a114/ %G en %F SIGMA_2016_12_a114
Eduardo García-Toraño Andrés; Tom Mestdag. Un-Reduction of Systems of Second-Order Ordinary Differential Equations. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a114/
[1] Arnaudon A., Castrillón López M., Holm D. D., Covariant un-reduction for curve matching, arXiv: 1508.05325
[2] Arnaudon A., Castrillón López M., Holm D. D., Un-reduction in field theory, with applications, arXiv: 1509.06919
[3] Arnol'd V. I., Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 60, 2nd ed., Springer-Verlag, New York, 1989 | DOI | MR
[4] Bauer M., Bruveris M., Michor P. W., “Overview of the geometries of shape spaces and diffeomorphism groups”, J. Math. Imaging Vision, 50 (2014), 60–97, arXiv: 1305.1150 | DOI | MR | Zbl
[5] Bruveris M., Ellis D. C. P., Holm D. D., Gay-Balmaz F., “Un-reduction”, J. Geom. Mech., 3 (2011), 363–387, arXiv: 1012.0076 | DOI | MR | Zbl
[6] Cendra H., Marsden J. E., Ratiu T. S., Lagrangian reduction by stages, Mem. Amer. Math. Soc., 152, 2001, x+108 pp. | DOI | MR
[7] Cotter C. J., Holm D. D., “Geodesic boundary value problems with symmetry”, J. Geom. Mech., 2 (2010), 51–68, arXiv: 0911.2205 | DOI | MR | Zbl
[8] Crampin M., Mestdag T., “Routh's procedure for non-abelian symmetry groups”, J. Math. Phys., 49 (2008), 032901, 28 pp., arXiv: 0802.0528 | DOI | MR | Zbl
[9] de León M., Marrero J. C., Martínez E., “Lagrangian submanifolds and dynamics on Lie algebroids”, J. Phys. A: Math. Gen., 38 (2005), R241–R308, arXiv: math.DG/0407528 | DOI | Zbl
[10] Ehlers K., Koiller J., Montgomery R., Rios P. M., “Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization”, The Breadth of Symplectic and Poisson Geometry, Progr. Math., 232, Birkhäuser Boston, Boston, MA, 2005, 75–120, arXiv: math-ph/0408005 | DOI | MR | Zbl
[11] Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 | DOI | Zbl
[12] Kossowski M., Thompson G., “Submersive second order ordinary differential equations”, Math. Proc. Cambridge Philos. Soc., 110 (1991), 207–224 | DOI | MR | Zbl
[13] Mestdag T., Crampin M., “Invariant Lagrangians, mechanical connections and the Lagrange–Poincaré equations”, J. Phys. A: Math. Theor., 41 (2008), 344015, 20 pp., arXiv: 0802.0146 | DOI | MR | Zbl
[14] Nomizu K., “Invariant affine connections on homogeneous spaces”, Amer. J. Math., 76 (1954), 33–65 | DOI | MR | Zbl
[15] O'Neill B., Semi-Riemannian geometry: with applications to relativity, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983 | MR | Zbl
[16] Sarlet W., Prince G. E., Crampin M., “Generalized submersiveness of second-order ordinary differential equations”, J. Geom. Mech., 1 (2009), 209–221 | DOI | MR | Zbl
[17] Thompson G., “Variational connections on Lie groups”, Differential Geom. Appl., 18 (2003), 255–270 | DOI | MR | Zbl
[18] Vilms J., “Connections on tangent bundles”, J. Differential Geometry, 1 (1967), 235–243 | MR | Zbl
[19] Yano K., Ishihara S., Tangent and cotangent bundles: differential geometry, Pure and Applied Mathematics, 16, Marcel Dekker, Inc., New York, 1973 | MR | Zbl