Un-Reduction of Systems of Second-Order Ordinary Differential Equations
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider an alternative approach to “un-reduction”. This is the process where one associates to a Lagrangian system on a manifold a dynamical system on a principal bundle over that manifold, in such a way that solutions project. We show that, when written in terms of second-order ordinary differential equations (SODEs), one may associate to the first system a (what we have called) “primary un-reduced SODE”, and we explain how all other un-reduced SODEs relate to it. We give examples that show that the considered procedure exceeds the realm of Lagrangian systems and that relate our results to those in the literature.
Keywords: reduction; symmetry; principal connection; second-order ordinary differential equations; Lagrangian system.
@article{SIGMA_2016_12_a114,
     author = {Eduardo Garc{\'\i}a-Tora\~no Andr\'es and Tom Mestdag},
     title = {Un-Reduction of {Systems} of {Second-Order} {Ordinary} {Differential} {Equations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a114/}
}
TY  - JOUR
AU  - Eduardo García-Toraño Andrés
AU  - Tom Mestdag
TI  - Un-Reduction of Systems of Second-Order Ordinary Differential Equations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a114/
LA  - en
ID  - SIGMA_2016_12_a114
ER  - 
%0 Journal Article
%A Eduardo García-Toraño Andrés
%A Tom Mestdag
%T Un-Reduction of Systems of Second-Order Ordinary Differential Equations
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a114/
%G en
%F SIGMA_2016_12_a114
Eduardo García-Toraño Andrés; Tom Mestdag. Un-Reduction of Systems of Second-Order Ordinary Differential Equations. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a114/

[1] Arnaudon A., Castrillón López M., Holm D. D., Covariant un-reduction for curve matching, arXiv: 1508.05325

[2] Arnaudon A., Castrillón López M., Holm D. D., Un-reduction in field theory, with applications, arXiv: 1509.06919

[3] Arnol'd V. I., Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 60, 2nd ed., Springer-Verlag, New York, 1989 | DOI | MR

[4] Bauer M., Bruveris M., Michor P. W., “Overview of the geometries of shape spaces and diffeomorphism groups”, J. Math. Imaging Vision, 50 (2014), 60–97, arXiv: 1305.1150 | DOI | MR | Zbl

[5] Bruveris M., Ellis D. C. P., Holm D. D., Gay-Balmaz F., “Un-reduction”, J. Geom. Mech., 3 (2011), 363–387, arXiv: 1012.0076 | DOI | MR | Zbl

[6] Cendra H., Marsden J. E., Ratiu T. S., Lagrangian reduction by stages, Mem. Amer. Math. Soc., 152, 2001, x+108 pp. | DOI | MR

[7] Cotter C. J., Holm D. D., “Geodesic boundary value problems with symmetry”, J. Geom. Mech., 2 (2010), 51–68, arXiv: 0911.2205 | DOI | MR | Zbl

[8] Crampin M., Mestdag T., “Routh's procedure for non-abelian symmetry groups”, J. Math. Phys., 49 (2008), 032901, 28 pp., arXiv: 0802.0528 | DOI | MR | Zbl

[9] de León M., Marrero J. C., Martínez E., “Lagrangian submanifolds and dynamics on Lie algebroids”, J. Phys. A: Math. Gen., 38 (2005), R241–R308, arXiv: math.DG/0407528 | DOI | Zbl

[10] Ehlers K., Koiller J., Montgomery R., Rios P. M., “Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization”, The Breadth of Symplectic and Poisson Geometry, Progr. Math., 232, Birkhäuser Boston, Boston, MA, 2005, 75–120, arXiv: math-ph/0408005 | DOI | MR | Zbl

[11] Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 | DOI | Zbl

[12] Kossowski M., Thompson G., “Submersive second order ordinary differential equations”, Math. Proc. Cambridge Philos. Soc., 110 (1991), 207–224 | DOI | MR | Zbl

[13] Mestdag T., Crampin M., “Invariant Lagrangians, mechanical connections and the Lagrange–Poincaré equations”, J. Phys. A: Math. Theor., 41 (2008), 344015, 20 pp., arXiv: 0802.0146 | DOI | MR | Zbl

[14] Nomizu K., “Invariant affine connections on homogeneous spaces”, Amer. J. Math., 76 (1954), 33–65 | DOI | MR | Zbl

[15] O'Neill B., Semi-Riemannian geometry: with applications to relativity, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983 | MR | Zbl

[16] Sarlet W., Prince G. E., Crampin M., “Generalized submersiveness of second-order ordinary differential equations”, J. Geom. Mech., 1 (2009), 209–221 | DOI | MR | Zbl

[17] Thompson G., “Variational connections on Lie groups”, Differential Geom. Appl., 18 (2003), 255–270 | DOI | MR | Zbl

[18] Vilms J., “Connections on tangent bundles”, J. Differential Geometry, 1 (1967), 235–243 | MR | Zbl

[19] Yano K., Ishihara S., Tangent and cotangent bundles: differential geometry, Pure and Applied Mathematics, 16, Marcel Dekker, Inc., New York, 1973 | MR | Zbl