Cartan Connections on Lie Groupoids and their Integrability
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A multiplicatively closed, horizontal $n$-plane field $D$ on a Lie groupoid $G$ over $M$ generalizes to intransitive geometry the classical notion of a Cartan connection. The infinitesimalization of the connection $D$ is a Cartan connection $\nabla $ on the Lie algebroid of $G$, a notion already studied elsewhere by the author. It is shown that $\nabla $ may be regarded as infinitesimal parallel translation in the groupoid $G$ along $D$. From this follows a proof that $D$ defines a pseudoaction generating a pseudogroup of transformations on $M$ precisely when the curvature of $\nabla $ vanishes. A byproduct of this analysis is a detailed description of multiplication in the groupoid $J^1 G$ of one-jets of bisections of $G$.
Mots-clés : Cartan connection; Lie algebroid; Lie groupoid.
@article{SIGMA_2016_12_a113,
     author = {Anthony D. Blaom},
     title = {Cartan {Connections} on {Lie} {Groupoids} and their {Integrability}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a113/}
}
TY  - JOUR
AU  - Anthony D. Blaom
TI  - Cartan Connections on Lie Groupoids and their Integrability
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a113/
LA  - en
ID  - SIGMA_2016_12_a113
ER  - 
%0 Journal Article
%A Anthony D. Blaom
%T Cartan Connections on Lie Groupoids and their Integrability
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a113/
%G en
%F SIGMA_2016_12_a113
Anthony D. Blaom. Cartan Connections on Lie Groupoids and their Integrability. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a113/

[1] Armstrong S., Note on pre-Courant algebroid structures for parabolic geometries, arXiv: 0709.0919

[2] Armstrong S., Lu R., Courant algebroids in parabolic geometry, arXiv: 1112.6425

[3] Blaom A. D., “Geometric structures as deformed infinitesimal symmetries”, Trans. Amer. Math. Soc., 358 (2006), 3651–3671, arXiv: math.DG/0404313 | DOI | MR | Zbl

[4] Blaom A. D., “Lie algebroids and Cartan's method of equivalence”, Trans. Amer. Math. Soc., 364 (2012), 3071–3135, arXiv: math.DG/0509071 | DOI | MR | Zbl

[5] Blaom A. D., “The infinitesimalization and reconstruction of locally homogeneous manifolds”, SIGMA, 9 (2013), 074, 19 pp., arXiv: 1304.7838 | DOI | MR | Zbl

[6] Blaom A. D., “Pseudogroups via pseudoactions: unifying local, global, and infinitesimal symmetry”, J. Lie Theory, 26 (2016), 535–565, arXiv: 1410.6981 | MR | Zbl

[7] Cannas da Silva A., Weinstein A., Geometric models for noncommutative algebras, Berkeley Mathematics Lecture Notes, 10, Amer. Math. Soc., Providence, RI; Berkeley Center for Pure and Applied Mathematics, Berkeley, CA, 1999 | MR | Zbl

[8] Čap A., Slovák J., Parabolic geometries. I. Background and general theory, Mathematical Surveys and Monographs, 154, Amer. Math. Soc., Providence, RI, 2009 | DOI | Zbl

[9] Cartan E., “Les systèmes de {P}faff, à cinq variables et les équations aux dérivées partielles du second ordre”, Ann. Sci. École Norm. Sup. (3), 27 (1910), 109–192 | MR | Zbl

[10] Courant T. J., “Dirac manifolds”, Trans. Amer. Math. Soc., 319 (1990), 631–661 | DOI | MR | Zbl

[11] Crainic M., “Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes”, Comment. Math. Helv., 78 (2003), 681–721, arXiv: math.DG/0008064 | DOI | MR | Zbl

[12] Crainic M., Fernandes R. L., “Lectures on integrability of Lie brackets”, Lectures on Poisson geometry, Geom. Topol. Monogr., 17, Geom. Topol. Publ., Coventry, 2011, 1–107, arXiv: math.DG/0611259 | MR | Zbl

[13] Crainic M., Salazar M. A., “Jacobi structures and Spencer operators”, J. Math. Pures Appl., 103 (2015), 504–521, arXiv: 1309.6156 | DOI | MR | Zbl

[14] Crainic M., Salazar M. A., Struchiner I., “Multiplicative forms and Spencer operators”, Math. Z., 279 (2015), 939–979, arXiv: 1210.2277 | DOI | MR | Zbl

[15] Crampin M., Saunders D., Cartan geometries and their symmetries. A Lie algebroid approach, Atlantis Studies in Variational Geometry, 4, Atlantis Press, Paris, 2016 | DOI | MR | Zbl

[16] del Hoyo M. L., Fernandes R. L., Riemannian metrics on differentiable stacks, arXiv: 1601.05616

[17] Dufour J. P., Zung N. T., Poisson structures and their normal forms, Progress in Mathematics, 242, Birkhäuser Verlag, Basel, 2005 | MR | Zbl

[18] Ehresmann C., “Les connexions infinitésimales dans un espace fibré différentiable”, Colloque de topologie (espaces fibrés) (Bruxelles, 1950), Georges Thone, Liège; Masson et Cie., Paris, 1951, 29–55 | MR

[19] Hitchin N., “Generalized Calabi–Yau manifolds”, Q. J. Math., 54 (2003), 281–308, arXiv: math.DG/0209099 | DOI | MR | Zbl

[20] Kirillov A. A., “Local Lie algebras”, Russ. Math. Surv., 31:4 (1976), 55–76 | DOI | MR

[21] Kirillov A. A., “Letter to the editors: Correction to “Local Lie algebras” (Russ. Math. Surv. 31 (1976), no. 4, 55–76)”, Russ. Math. Surv., 32:1 (1977), 268 | MR | Zbl

[22] Lichnerowicz A., “Les variétés de Jacobi et leurs algèbres de Lie associées”, J. Math. Pures Appl., 57 (1978), 453–488 | MR | Zbl

[23] Mackenzie K. C. H., General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl

[24] Morimoto T., “Geometric structures on filtered manifolds”, Hokkaido Math. J., 22 (1993), 263–347 | DOI | MR | Zbl

[25] Salazar M. A., Pfaffian groupoids, Ph.D. Thesis, University of Utrecht, The Netherlands, 2013, arXiv: 1306.1164

[26] Sharpe R. W., Differential geometry: Cartan's generalization of Klein's Erlangen program, Graduate Texts in Mathematics, 166, Springer-Verlag, New York, 1997 | MR | Zbl

[27] Xu X., “Twisted Courant algebroids and coisotropic Cartan geometries”, J. Geom. Phys., 82 (2014), 124–131, arXiv: 1206.2282 | DOI | MR | Zbl