@article{SIGMA_2016_12_a112,
author = {Dra\v{z}en Adamovi\'c and Gordan Radobolja},
title = {On {Free} {Field} {Realizations} of $W(2,2)${-Modules}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a112/}
}
Dražen Adamović; Gordan Radobolja. On Free Field Realizations of $W(2,2)$-Modules. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a112/
[1] Adamović D., “Classification of irreducible modules of certain subalgebras of free boson vertex algebra”, J. Algebra, 270 (2003), 115–132, arXiv: math.QA/0207155 | DOI | MR | Zbl
[2] Adamović D., Milas A., “Logarithmic intertwining operators and $W(2,2p-1)$ algebras”, J. Math. Phys., 48 (2007), 073503, 20 pp., arXiv: math.QA/0702081 | DOI | MR | Zbl
[3] Adamović D., Milas A., “Lattice construction of logarithmic modules for certain vertex algebras”, Selecta Math. (N.S.), 15 (2009), 535–561, arXiv: 0902.3417 | DOI | MR | Zbl
[4] Adamović D., Radobolja G., “Free field realization of the twisted Heisenberg–Virasoro algebra at level zero and its applications”, J. Pure Appl. Algebra, 219 (2015), 4322–4342, arXiv: 1405.1707 | DOI | MR | Zbl
[5] Adamović D., Radobolja G., Self-dual and logarithmic representations of the twisted Heisenberg–Virasoro algebra at level zero, in preparation
[6] Arbarello E., De Concini C., Kac V. G., Procesi C., “Moduli spaces of curves and representation theory”, Comm. Math. Phys., 117 (1988), 1–36 | DOI | MR | Zbl
[7] Billig Y., Energy-momentum tensor for the toroidal Lie algebra, arXiv: math.RT/0201313
[8] Billig Y., “Representations of the twisted Heisenberg–Virasoro algebra at level zero”, Canad. Math. Bull., 46 (2003), 529–537, arXiv: math.RT/0201314 | DOI | MR | Zbl
[9] Billig Y., “A category of modules for the full toroidal Lie algebra”, Int. Math. Res. Not., 2006 (2006), 68395, 46 pp., arXiv: math.RT/0509368 | DOI | MR | Zbl
[10] Creutzig T., Milas A., “False theta functions and the Verlinde formula”, Adv. Math., 262 (2014), 520–545, arXiv: 1309.6037 | DOI | MR | Zbl
[11] Feigin B. L., Fuchs D. B., “Representations of the Virasoro algebra”, Representation of Lie Groups and Related Topics, Adv. Stud. Contemp. Math., 7, Gordon and Breach, New York, 1990, 465–554 | MR
[12] Frenkel I. B., Huang Y.-Z., Lepowsky J., On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc., 104, 1993, viii+64 pp. | DOI | MR
[13] Gainutdinov A. M., Semikhatov A. M., Tipunin I. Yu., Feigin B. L., “The Kazhdan–Lusztig correspondence for the representation category of the triplet $W$-algebra in logorithmic conformal field theories”, Theoret. Math. Phys., 148 (2006), 1210–1235, arXiv: math.QA/0512621 | DOI | MR | Zbl
[14] Jiang W., Pei Y., “On the structure of Verma modules over the $W$-algebra $W(2,2)$”, J. Math. Phys., 51 (2010), 022303, 8 pp. | DOI | MR | Zbl
[15] Jiang W., Zhang W., “Verma modules over the $W(2,2)$ algebras”, J. Geom. Phys., 98 (2015), 118–127 | DOI | MR | Zbl
[16] Lepowsky J., Li H., Introduction to vertex operator algebras and their representations, Progress in Mathematics, 227, Birkhäuser Boston, Inc., Boston, MA, 2004 | DOI | MR | Zbl
[17] Li H. S., “Symmetric invariant bilinear forms on vertex operator algebras”, J. Pure Appl. Algebra, 96 (1994), 279–297 | DOI | MR | Zbl
[18] Liu D., Zhu L., Classification of Harish-Chandra modules over the $W$-algebra $W(2,2)$, arXiv: 0801.2601
[19] Radobolja G., “Subsingular vectors in Verma modules, and tensor product of weight modules over the twisted Heisenberg–Virasoro algebra and $W(2,2)$ algebra”, J. Math. Phys., 54 (2013), 071701, 24 pp., arXiv: 1302.0801 | DOI | MR | Zbl
[20] Zhang W., Dong C., “$W$-algebra $W(2,2)$ and the vertex operator algebra $L(\frac 12,0)\otimes L(\frac 12,0)$”, Comm. Math. Phys., 285 (2009), 991–1004, arXiv: 0711.4624 | DOI | MR | Zbl