Hypergroups Related to a Pair of Compact Hypergroups
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The purpose of the present paper is to investigate a hypergroup associated with irreducible characters of a compact hypergroup $H$ and a closed subhypergroup $H_0$ of $H$ with $ |H/H_0| + \infty$. The convolution of this hypergroup is introduced by inducing irreducible characters of $H_0$ to $H$ and by restricting irreducible characters of $H$ to $H_0$. The method of proof relies on the notion of an induced character and an admissible hypergroup pair.
Keywords: hypergroup; induced character; semi-direct product hypergroup; admissible hypergroup pair.
@article{SIGMA_2016_12_a110,
     author = {Herbert Heyer and Satoshi Kawakami and Tatsuya Tsurii and Satoe Yamanaka},
     title = {Hypergroups {Related} to a {Pair} of {Compact} {Hypergroups}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a110/}
}
TY  - JOUR
AU  - Herbert Heyer
AU  - Satoshi Kawakami
AU  - Tatsuya Tsurii
AU  - Satoe Yamanaka
TI  - Hypergroups Related to a Pair of Compact Hypergroups
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a110/
LA  - en
ID  - SIGMA_2016_12_a110
ER  - 
%0 Journal Article
%A Herbert Heyer
%A Satoshi Kawakami
%A Tatsuya Tsurii
%A Satoe Yamanaka
%T Hypergroups Related to a Pair of Compact Hypergroups
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a110/
%G en
%F SIGMA_2016_12_a110
Herbert Heyer; Satoshi Kawakami; Tatsuya Tsurii; Satoe Yamanaka. Hypergroups Related to a Pair of Compact Hypergroups. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a110/

[1] Bloom W. R., Heyer H., Harmonic analysis of probability measures on hypergroups, de Gruyter Studies in Mathematics, 20, Walter de Gruyter Co., Berlin, 1995 | DOI | MR

[2] Dunkl C. F., “The measure algebra of a locally compact hypergroup”, Trans. Amer. Math. Soc., 179 (1973), 331–348 | DOI | MR | Zbl

[3] Dunkl C. F., “Structure hypergroups for measure algebras”, Pacific J. Math., 47 (1973), 413–425 | DOI | MR | Zbl

[4] Heyer H., Katayama Y., Kawakami S., Kawasaki K., “Extensions of finite commutative hypergroups”, Sci. Math. Jpn., 65 (2007), 373–385 | MR | Zbl

[5] Heyer H., Kawakami S., “Hypergroup structures arising from certain dual objects of a hypergroup”, J. Math. Soc. Japan (to appear)

[6] Heyer H., Kawakami S., “Extensions of Pontryagin hypergroups”, Probab. Math. Statist., 26 (2006), 245–260 | MR | Zbl

[7] Heyer H., Kawakami S., “A cohomology approach to the extension problem for commutative hypergroups”, Semigroup Forum, 83 (2011), 371–394 | DOI | MR | Zbl

[8] Heyer H., Kawakami S., “An imprimitivity theorem for representations of a semi-direct product hypergroup”, J. Lie Theory, 24 (2014), 159–178 | MR | Zbl

[9] Heyer H., Kawakami S., Tsurii T., Yamanaka S., A commutative hypergroup associated with a hyperfield, arXiv: 1604.04361

[10] Heyer H., Kawakami S., Tsurii T., Yamanaka S., Hypergroups arising from characters of a compact group and its subgroup, arXiv: 1605.03744

[11] Heyer H., Kawakami S., Yamanaka S., “Characters of induced representations of a compact hypergroup”, Monatsh. Math., 179 (2016), 421–440 | DOI | MR | Zbl

[12] Hirai T., “Classical method of constructing a complete set of irreducible representations of semidirect product of a compact group with a finite group”, Probab. Math. Statist., 33 (2013), 353–362 | MR | Zbl

[13] Jewett R. I., “Spaces with an abstract convolution of measures”, Adv. Math., 18 (1975), 1–101 | DOI | MR | Zbl

[14] Kawakami S., Tsurii T., Yamanaka S., “Deformations of finite hypergroups”, Sci. Math. Japan, e-2015 (2015), 2015-21, 11 pp.

[15] Spector R., “Aperçu de la théorie des hypergroupes”, Analyse Harmonique sur les groupes de Lie, Sém. (Nancy-Strasbourg, 1973–1975), Lecture Notes in Math., 497, Springer, Berlin, 1975, 643–673 | DOI | MR

[16] Sunder V. S., Wildberger N. J., “Fusion rule algebras and walks on graphs”, The Proceedings of the Fifth Ramanujan Symposium on Harmonic Analysis, ed. K. R. Parthasarathy, Ramanujan Institute, 1999, 53–80

[17] Vrem R. C., “Harmonic analysis on compact hypergroups”, Pacific J. Math., 85 (1979), 239–251 | DOI | MR

[18] Willson B., “Configurations and invariant nets for amenable hypergroups and related algebras”, Trans. Amer. Math. Soc., 366 (2014), 5087–5112 | DOI | MR | Zbl