The Hojman Construction and Hamiltonization of Nonholonomic Systems
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, using the Hojman construction, we give examples of various Poisson brackets which differ from those which are usually analyzed in Hamiltonian mechanics. They possess a nonmaximal rank, and in the general case an invariant measure and Casimir functions can be globally absent for them.
Keywords: Hamiltonization; Poisson bracket; Casimir functions; invariant measure; nonholonomic hinge; Suslov problem; Chaplygin sleigh.
@article{SIGMA_2016_12_a11,
     author = {Ivan A. Bizyaev and Alexey V. Borisov and Ivan S. Mamaev},
     title = {The {Hojman} {Construction} and {Hamiltonization} of {Nonholonomic} {Systems}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a11/}
}
TY  - JOUR
AU  - Ivan A. Bizyaev
AU  - Alexey V. Borisov
AU  - Ivan S. Mamaev
TI  - The Hojman Construction and Hamiltonization of Nonholonomic Systems
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a11/
LA  - en
ID  - SIGMA_2016_12_a11
ER  - 
%0 Journal Article
%A Ivan A. Bizyaev
%A Alexey V. Borisov
%A Ivan S. Mamaev
%T The Hojman Construction and Hamiltonization of Nonholonomic Systems
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a11/
%G en
%F SIGMA_2016_12_a11
Ivan A. Bizyaev; Alexey V. Borisov; Ivan S. Mamaev. The Hojman Construction and Hamiltonization of Nonholonomic Systems. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a11/

[1] Benenti S., “A ‘user-friendly’ approach to the dynamical equations of non-holonomic systems”, SIGMA, 3 (2007), 036, 33 pp., arXiv: math.DS/0703043 | DOI | MR | Zbl

[2] Benenti S., “The non-holonomic double pendulum: an example of non-linear non-holonomic system”, Regul. Chaotic Dyn., 16 (2011), 417–442 | DOI | MR | Zbl

[3] Bizyaev I. A., Bolsinov A. V., Borisov A. V., Mamaev I. S., “Topology and bifurcations in nonholonomic mechanics”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25 (2015), 1530028, 21 pp. | DOI | MR | Zbl

[4] Bizyaev I. A., Borisov A. V., Mamaev I. S., “The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside”, Regul. Chaotic Dyn., 19 (2014), 198–213 | DOI | MR | Zbl

[5] Bizyaev I. A., Kozlov V. V., “Homogeneous systems with quadratic integrals, Lie–Poisson quasi-brackets, and the Kovalevskaya method”, Sb. Math., 206 (2015), 29–54 | DOI | MR

[6] Bizyaev I. A., Tsiganov A. V., “On the Routh sphere problem”, J. Phys. A: Math. Theor., 46 (2013), 085202, 11 pp., arXiv: 1210.7903 | DOI | MR | Zbl

[7] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Hamiltonization of non-holonomic systems in the neighborhood of invariant manifolds”, Regul. Chaotic Dyn., 16 (2011), 443–464 | DOI | MR | Zbl

[8] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Geometrisation of Chaplygin's reducing multiplier theorem”, Nonlinearity, 28 (2015), 2307–2318, arXiv: 1405.5843 | DOI | MR | Zbl

[9] Borisov A. V., Kazakov A. O., Sataev I. R., “The reversal and chaotic attractor in the nonholonomic model of Chaplygin's top”, Regul. Chaotic Dyn., 19 (2014), 718–733 | DOI | MR | Zbl

[10] Borisov A. V., Kilin A. A., Mamaev I. S., “Hamiltonicity and integrability of the Suslov problem”, Regul. Chaotic Dyn., 16 (2011), 104–116 | DOI | MR | Zbl

[11] Borisov A. V., Kilin A. A., Mamaev I. S., “The problem of drift and recurrence for the rolling Chaplygin ball”, Regul. Chaotic Dyn., 18 (2013), 832–859 | DOI | MR | Zbl

[12] Borisov A. V., Mamaev I. S., “Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems”, Regul. Chaotic Dyn., 13 (2008), 443–490 | DOI | MR | Zbl

[13] Borisov A. V., Mamaev I. S., “The dynamics of a Chaplygin sleigh”, J. Appl. Math. Mech., 73 (2009), 156–161 | DOI | MR | Zbl

[14] Borisov A. V., Mamaev I. S., “Symmetries and reduction in nonholonomic mechanics”, Regul. Chaotic Dyn., 20 (2015), 553–604 | DOI | MR | Zbl

[15] Borisov A. V., Mamaev I. S., Bizyaev I. A., “The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere”, Regul. Chaotic Dyn., 18 (2013), 277–328 | DOI | MR | Zbl

[16] Borisov A. V., Mamaev I. S., Bizyaev I. A., “The Jacobi integral in nonholonomic mechanics”, Regul. Chaotic Dyn., 20 (2015), 383–400 | DOI | MR | Zbl

[17] Cantrijn F., Cortés J., de León M., Martín de Diego D., “On the geometry of generalized Chaplygin systems”, Math. Proc. Cambridge Philos. Soc., 132 (2002), 323–351, arXiv: math.DS/0008141 | DOI | MR | Zbl

[18] Cantrijn F., de León M., Martín de Diego D., “On almost-Poisson structures in nonholonomic mechanics”, Nonlinearity, 12 (1999), 721–737 | DOI | MR | Zbl

[19] Carathéodory C., “Der Schlitten”, Z. Angew. Math. Mech., 13 (1933), 71–76 | DOI

[20] Cariñena J. F., Guha P., Rañada M. F., “Quasi-Hamiltonian structure and Hojman construction”, J. Math. Anal. Appl., 332 (2007), 975–988 | DOI | MR | Zbl

[21] Chaplygin S. A., “On the theory of motion of nonholonomic systems. The reducing-multiplier theorem”, Regul. Chaotic Dyn., 13 (2008), 369–376 | DOI | MR | Zbl

[22] Fassò F., Giacobbe A., Sansonetto N., “Periodic flows, rank-two Poisson structures, and nonholonomic mechanics”, Regul. Chaotic Dyn., 10 (2005), 267–284 | DOI | MR | Zbl

[23] Fassò F., Sansonetto N., “Conservation of energy and momenta in nonholonomic systems with affine constraints”, Regul. Chaotic Dyn., 20 (2015), 449–462, arXiv: 1505.01172 | DOI | MR | Zbl

[24] Fedorov Yu. N., García-Naranjo L. C., Marrero J. C., “Unimodularity and preservation of volumes in nonholonomic mechanics”, J. Nonlinear Sci., 25 (2015), 203–246, arXiv: 1304.1788 | DOI | MR | Zbl

[25] Fedorov Yu. N., Maciejewski A. J., Przybylska M., “The Poisson equations in the nonholonomic Suslov problem: integrability, meromorphic and hypergeometric solutions”, Nonlinearity, 22 (2009), 2231–2259, arXiv: 0902.0079 | DOI | MR | Zbl

[26] Grammaticos B., Dorizzi B., Ramani A., “Hamiltonians with high-order integrals and the “weak-Painlevé” concept”, J. Math. Phys., 25 (1984), 3470–3473 | DOI | MR

[27] Hénon M., Heiles C., “The applicability of the third integral of motion: Some numerical experiments”, Astronom. J., 69 (1964), 73–79 | DOI | MR

[28] Hojman S. A., “The construction of a Poisson structure out of a symmetry and a conservation law of a dynamical system”, J. Phys. A: Math. Gen., 29 (1996), 667–674 | DOI | MR | Zbl

[29] Konyaev A. Yu., “Classification of Lie algebras with generic orbits of dimension 2 in the coadjoint representation”, Sb. Math., 205 (2014), 45–62 | DOI | MR | Zbl

[30] Kozlov V. V., “On the existence of an integral invariant of a smooth dynamic system”, J. Appl. Math. Mech., 51 (1987), 420–426 | DOI | MR | Zbl

[31] Kozlov V. V., “Invariant measures of the Euler–Poincaré equations on Lie algebras”, Funct. Anal. Appl., 22 (1988), 58–59 | DOI | MR | Zbl

[32] Kozlov V. V., “On the integration theory of equations of nonholonomic mechanics”, Regul. Chaotic Dyn., 7 (2002), 161–176, arXiv: nlin.SI/0503027 | DOI | MR | Zbl

[33] Kozlov V. V., Yaroshchuk V. A., “On invariant measures of Euler–Poincaré equations on unimodular groups”, Mosc. Univ. Mech. Bull., 1993, no. 2, 45–50 | MR | Zbl

[34] Maciejewski A. J., Przybylska M., Yoshida H., “Necessary conditions for super-integrability of Hamiltonian systems”, Phys. Lett. A, 372 (2008), 5581–5587 | DOI | MR | Zbl

[35] Maciejewski A. J., Przybylska M., Yoshida H., “Necessary conditions for classical super-integrability of a certain family of potentials in constant curvature spaces”, J. Phys. A: Math. Theor., 43 (2010), 382001, 15 pp., arXiv: 1004.3854 | DOI | MR | Zbl

[36] Mahdi A., Valls C., “Analytic non-integrability of the Suslov problem”, J. Math. Phys., 53 (2012), 122901, 8 pp. | DOI | MR | Zbl

[37] Patera J., Sharp R. T., Winternitz P., Zassenhaus H., “Invariants of real low dimension Lie algebras”, J. Math. Phys., 17 (1976), 986–994 | DOI | MR | Zbl

[38] Tsiganov A. V., “One invariant measure and different Poisson brackets for two non-holonomic systems”, Regul. Chaotic Dyn., 17 (2012), 72–96, arXiv: 1106.1952 | DOI | MR | Zbl

[39] Tsiganov A. V., “On the Poisson structures for the nonholonomic Chaplygin and Veselova problems”, Regul. Chaotic Dyn., 17 (2012), 439–450 | DOI | MR | Zbl

[40] von Brill A., Vorlesungen zur Einführung in die Mechanik raumerfüllender Massen, B. G. Teubner, Berlin, 1909 | Zbl

[41] Ziglin S. L., “On the absence of an additional first integral in the special case of the G. K. Suslov problem”, Russ. Math. Surv., 52 (1997), 434–435 | DOI | MR | Zbl