@article{SIGMA_2016_12_a11,
author = {Ivan A. Bizyaev and Alexey V. Borisov and Ivan S. Mamaev},
title = {The {Hojman} {Construction} and {Hamiltonization} of {Nonholonomic} {Systems}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a11/}
}
TY - JOUR AU - Ivan A. Bizyaev AU - Alexey V. Borisov AU - Ivan S. Mamaev TI - The Hojman Construction and Hamiltonization of Nonholonomic Systems JO - Symmetry, integrability and geometry: methods and applications PY - 2016 VL - 12 UR - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a11/ LA - en ID - SIGMA_2016_12_a11 ER -
%0 Journal Article %A Ivan A. Bizyaev %A Alexey V. Borisov %A Ivan S. Mamaev %T The Hojman Construction and Hamiltonization of Nonholonomic Systems %J Symmetry, integrability and geometry: methods and applications %D 2016 %V 12 %U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a11/ %G en %F SIGMA_2016_12_a11
Ivan A. Bizyaev; Alexey V. Borisov; Ivan S. Mamaev. The Hojman Construction and Hamiltonization of Nonholonomic Systems. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a11/
[1] Benenti S., “A ‘user-friendly’ approach to the dynamical equations of non-holonomic systems”, SIGMA, 3 (2007), 036, 33 pp., arXiv: math.DS/0703043 | DOI | MR | Zbl
[2] Benenti S., “The non-holonomic double pendulum: an example of non-linear non-holonomic system”, Regul. Chaotic Dyn., 16 (2011), 417–442 | DOI | MR | Zbl
[3] Bizyaev I. A., Bolsinov A. V., Borisov A. V., Mamaev I. S., “Topology and bifurcations in nonholonomic mechanics”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25 (2015), 1530028, 21 pp. | DOI | MR | Zbl
[4] Bizyaev I. A., Borisov A. V., Mamaev I. S., “The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside”, Regul. Chaotic Dyn., 19 (2014), 198–213 | DOI | MR | Zbl
[5] Bizyaev I. A., Kozlov V. V., “Homogeneous systems with quadratic integrals, Lie–Poisson quasi-brackets, and the Kovalevskaya method”, Sb. Math., 206 (2015), 29–54 | DOI | MR
[6] Bizyaev I. A., Tsiganov A. V., “On the Routh sphere problem”, J. Phys. A: Math. Theor., 46 (2013), 085202, 11 pp., arXiv: 1210.7903 | DOI | MR | Zbl
[7] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Hamiltonization of non-holonomic systems in the neighborhood of invariant manifolds”, Regul. Chaotic Dyn., 16 (2011), 443–464 | DOI | MR | Zbl
[8] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Geometrisation of Chaplygin's reducing multiplier theorem”, Nonlinearity, 28 (2015), 2307–2318, arXiv: 1405.5843 | DOI | MR | Zbl
[9] Borisov A. V., Kazakov A. O., Sataev I. R., “The reversal and chaotic attractor in the nonholonomic model of Chaplygin's top”, Regul. Chaotic Dyn., 19 (2014), 718–733 | DOI | MR | Zbl
[10] Borisov A. V., Kilin A. A., Mamaev I. S., “Hamiltonicity and integrability of the Suslov problem”, Regul. Chaotic Dyn., 16 (2011), 104–116 | DOI | MR | Zbl
[11] Borisov A. V., Kilin A. A., Mamaev I. S., “The problem of drift and recurrence for the rolling Chaplygin ball”, Regul. Chaotic Dyn., 18 (2013), 832–859 | DOI | MR | Zbl
[12] Borisov A. V., Mamaev I. S., “Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems”, Regul. Chaotic Dyn., 13 (2008), 443–490 | DOI | MR | Zbl
[13] Borisov A. V., Mamaev I. S., “The dynamics of a Chaplygin sleigh”, J. Appl. Math. Mech., 73 (2009), 156–161 | DOI | MR | Zbl
[14] Borisov A. V., Mamaev I. S., “Symmetries and reduction in nonholonomic mechanics”, Regul. Chaotic Dyn., 20 (2015), 553–604 | DOI | MR | Zbl
[15] Borisov A. V., Mamaev I. S., Bizyaev I. A., “The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere”, Regul. Chaotic Dyn., 18 (2013), 277–328 | DOI | MR | Zbl
[16] Borisov A. V., Mamaev I. S., Bizyaev I. A., “The Jacobi integral in nonholonomic mechanics”, Regul. Chaotic Dyn., 20 (2015), 383–400 | DOI | MR | Zbl
[17] Cantrijn F., Cortés J., de León M., Martín de Diego D., “On the geometry of generalized Chaplygin systems”, Math. Proc. Cambridge Philos. Soc., 132 (2002), 323–351, arXiv: math.DS/0008141 | DOI | MR | Zbl
[18] Cantrijn F., de León M., Martín de Diego D., “On almost-Poisson structures in nonholonomic mechanics”, Nonlinearity, 12 (1999), 721–737 | DOI | MR | Zbl
[19] Carathéodory C., “Der Schlitten”, Z. Angew. Math. Mech., 13 (1933), 71–76 | DOI
[20] Cariñena J. F., Guha P., Rañada M. F., “Quasi-Hamiltonian structure and Hojman construction”, J. Math. Anal. Appl., 332 (2007), 975–988 | DOI | MR | Zbl
[21] Chaplygin S. A., “On the theory of motion of nonholonomic systems. The reducing-multiplier theorem”, Regul. Chaotic Dyn., 13 (2008), 369–376 | DOI | MR | Zbl
[22] Fassò F., Giacobbe A., Sansonetto N., “Periodic flows, rank-two Poisson structures, and nonholonomic mechanics”, Regul. Chaotic Dyn., 10 (2005), 267–284 | DOI | MR | Zbl
[23] Fassò F., Sansonetto N., “Conservation of energy and momenta in nonholonomic systems with affine constraints”, Regul. Chaotic Dyn., 20 (2015), 449–462, arXiv: 1505.01172 | DOI | MR | Zbl
[24] Fedorov Yu. N., García-Naranjo L. C., Marrero J. C., “Unimodularity and preservation of volumes in nonholonomic mechanics”, J. Nonlinear Sci., 25 (2015), 203–246, arXiv: 1304.1788 | DOI | MR | Zbl
[25] Fedorov Yu. N., Maciejewski A. J., Przybylska M., “The Poisson equations in the nonholonomic Suslov problem: integrability, meromorphic and hypergeometric solutions”, Nonlinearity, 22 (2009), 2231–2259, arXiv: 0902.0079 | DOI | MR | Zbl
[26] Grammaticos B., Dorizzi B., Ramani A., “Hamiltonians with high-order integrals and the “weak-Painlevé” concept”, J. Math. Phys., 25 (1984), 3470–3473 | DOI | MR
[27] Hénon M., Heiles C., “The applicability of the third integral of motion: Some numerical experiments”, Astronom. J., 69 (1964), 73–79 | DOI | MR
[28] Hojman S. A., “The construction of a Poisson structure out of a symmetry and a conservation law of a dynamical system”, J. Phys. A: Math. Gen., 29 (1996), 667–674 | DOI | MR | Zbl
[29] Konyaev A. Yu., “Classification of Lie algebras with generic orbits of dimension 2 in the coadjoint representation”, Sb. Math., 205 (2014), 45–62 | DOI | MR | Zbl
[30] Kozlov V. V., “On the existence of an integral invariant of a smooth dynamic system”, J. Appl. Math. Mech., 51 (1987), 420–426 | DOI | MR | Zbl
[31] Kozlov V. V., “Invariant measures of the Euler–Poincaré equations on Lie algebras”, Funct. Anal. Appl., 22 (1988), 58–59 | DOI | MR | Zbl
[32] Kozlov V. V., “On the integration theory of equations of nonholonomic mechanics”, Regul. Chaotic Dyn., 7 (2002), 161–176, arXiv: nlin.SI/0503027 | DOI | MR | Zbl
[33] Kozlov V. V., Yaroshchuk V. A., “On invariant measures of Euler–Poincaré equations on unimodular groups”, Mosc. Univ. Mech. Bull., 1993, no. 2, 45–50 | MR | Zbl
[34] Maciejewski A. J., Przybylska M., Yoshida H., “Necessary conditions for super-integrability of Hamiltonian systems”, Phys. Lett. A, 372 (2008), 5581–5587 | DOI | MR | Zbl
[35] Maciejewski A. J., Przybylska M., Yoshida H., “Necessary conditions for classical super-integrability of a certain family of potentials in constant curvature spaces”, J. Phys. A: Math. Theor., 43 (2010), 382001, 15 pp., arXiv: 1004.3854 | DOI | MR | Zbl
[36] Mahdi A., Valls C., “Analytic non-integrability of the Suslov problem”, J. Math. Phys., 53 (2012), 122901, 8 pp. | DOI | MR | Zbl
[37] Patera J., Sharp R. T., Winternitz P., Zassenhaus H., “Invariants of real low dimension Lie algebras”, J. Math. Phys., 17 (1976), 986–994 | DOI | MR | Zbl
[38] Tsiganov A. V., “One invariant measure and different Poisson brackets for two non-holonomic systems”, Regul. Chaotic Dyn., 17 (2012), 72–96, arXiv: 1106.1952 | DOI | MR | Zbl
[39] Tsiganov A. V., “On the Poisson structures for the nonholonomic Chaplygin and Veselova problems”, Regul. Chaotic Dyn., 17 (2012), 439–450 | DOI | MR | Zbl
[40] von Brill A., Vorlesungen zur Einführung in die Mechanik raumerfüllender Massen, B. G. Teubner, Berlin, 1909 | Zbl
[41] Ziglin S. L., “On the absence of an additional first integral in the special case of the G. K. Suslov problem”, Russ. Math. Surv., 52 (1997), 434–435 | DOI | MR | Zbl