@article{SIGMA_2016_12_a109,
author = {Christopher M. Ormerod and Eric M. Rains},
title = {Commutation {Relations} and {Discrete} {Garnier} {Systems}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a109/}
}
Christopher M. Ormerod; Eric M. Rains. Commutation Relations and Discrete Garnier Systems. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a109/
[1] Adler V. E., “Cutting of polygons”, Funct. Anal. Appl., 27 (1993), 141–143 | DOI | MR | Zbl
[2] Adler V. E., Bobenko A. I., Suris Yu. B., “Classification of integrable equations on quad-graphs. The consistency approach”, Comm. Math. Phys., 233 (2003), 513–543, arXiv: nlin.SI/0202024 | DOI | MR | Zbl
[3] Adler V. E., Bobenko A. I., Suris Yu. B., “Geometry of Yang–Baxter maps: pencils of conics and quadrirational mappings”, Comm. Anal. Geom., 12 (2004), 967–1007, arXiv: math.QA/0307009 | DOI | MR | Zbl
[4] Adler V. E., Bobenko A. I., Suris Yu. B., “Discrete nonlinear hyperbolic equations: classification of integrable cases”, Funct. Anal. Appl., 43 (2009), 3–17, arXiv: 0705.1663 | DOI | MR | Zbl
[5] Arinkin D., Borodin A., “Moduli spaces of $d$-connections and difference Painlevé equations”, Duke Math. J., 134 (2006), 515–556, arXiv: math.AG/0411584 | DOI | MR | Zbl
[6] Birkhoff G. D., “General theory of linear difference equations”, Trans. Amer. Math. Soc., 12 (1911), 243–284 | DOI | MR | Zbl
[7] Birkhoff G. D., “The generalized Riemann problem for linear differential equations and the allied problems for linear difference and $q$-difference equations”, Proc. Amer. Acad. Arts Sci., 49 (1913), 512–568 | DOI
[8] Birkhoff G. D., Guenther P. E., “Note on a canonical form for the linear $q$-difference system”, Proc. Nat. Acad. Sci. USA, 27 (1941), 218–222 | DOI | MR
[9] Boalch P., “Some explicit solutions to the Riemann–Hilbert problem”, Differential Equations and Quantum Groups, IRMA Lect. Math. Theor. Phys., 9, Eur. Math. Soc., Zürich, 2007, 85–112, arXiv: math.DG/0501464 | DOI | MR
[10] Borodin A., “Discrete gap probabilities and discrete Painlevé equations”, Duke Math. J., 117 (2003), 489–542, arXiv: math-ph/0111008 | DOI | MR | Zbl
[11] Borodin A., “Isomonodromy transformations of linear systems of difference equations”, Ann. of Math., 160 (2004), 1141–1182, arXiv: math.CA/0209144 | DOI | MR
[12] Deligne P., Milne J. S., “Tannakian categories”, Hodge Cycles, Motives, and Shimura Varieties, Lecture Notes in Math., 900, Springer, 101–228 | DOI
[13] Dzhamay A., “On the Lagrangian structure of the discrete isospectral and isomonodromic transformations”, Int. Math. Res. Not., 2008 (2008), rnn 102, 22 pp., arXiv: 0711.0570 | DOI | MR
[14] Dzhamay A., Sakai H., Takenawa T., Discrete Schlesinger transformations, their Hamiltonian Formulation, and difference Painlevé equations, arXiv: 1302.2972
[15] Etingof P. I., “Galois groups and connection matrices of $q$-difference equations”, Electron. Res. Announc. Amer. Math. Soc., 1 (1995), 1–9 | DOI | MR | Zbl
[16] Flaschka H., Newell A. C., “Monodromy- and spectrum-preserving deformations. I”, Comm. Math. Phys., 76 (1980), 65–116 | DOI | MR | Zbl
[17] Forster O., Riemann surfaces, Mir, M., 1980 | MR
[18] Fuchs R., “Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen”, Math. Ann., 63 (1907), 301–321 | DOI | MR | Zbl
[19] Fuchs R., “Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen”, Math. Ann., 70 (1911), 525–549 | DOI | MR | Zbl
[20] Garnier R., “Sur des équations différentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses points critiques fixes”, Ann. Sci. École Norm. Sup. (3), 29 (1912), 1–126 | MR | Zbl
[21] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 35, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR
[22] Jimbo M., Miwa T., Ueno K., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and $\tau $-function”, Phys. D, 2 (1981), 306–352 | DOI | MR | Zbl
[23] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II”, Phys. D, 2 (1981), 407–448 | DOI | MR | Zbl
[24] Jimbo M., Sakai H., “A $q$-analog of the sixth Painlevé equation”, Lett. Math. Phys., 38 (1996), 145–154 | DOI | MR | Zbl
[25] Joshi N., Nakazono N., Shi Y., “Geometric reductions of ABS equations on an $n$-cube to discrete Painlevé systems”, J. Phys. A: Math. Theor., 47 (2014), 505201, 16 pp., arXiv: 1402.6084 | DOI | MR | Zbl
[26] Kajiwara K., Noumi M., Yamada Y., “Discrete dynamical systems with $W\big(A_{m-1}^{(1)}\times A_{n-1}^{(1)}\big)$ symmetry”, Lett. Math. Phys., 60 (2002), 211–219, arXiv: nlin.SI/0106029 | DOI | MR | Zbl
[27] Kajiwara K., Noumi M., Yamada Y., Geometric aspects of Painlevé equations, arXiv: 1509.08186
[28] Knizel A., Moduli spaces of $q$-connections and gap probabilities, arXiv: 1506.06718
[29] Kruskal M. D., Tamizhmani K. M., Grammaticos B., Ramani A., “Asymmetric discrete Painlevé equations”, Regul. Chaotic Dyn., 5 (2000), 273–280 | DOI | MR | Zbl
[30] Nijhoff F., Capel H., “The discrete Korteweg–de Vries equation”, Acta Appl. Math., 39 (1995), 133–158 | DOI | MR | Zbl
[31] Nijhoff F. W., Quispel G. R. W., Capel H. W., “Direct linearization of nonlinear difference-difference equations”, Phys. Lett. A, 97 (1983), 125–128 | DOI | MR
[32] Nijhoff F. W., Walker A. J., “The discrete and continuous Painlevé VI hierarchy and the Garnier systems”, Glasg. Math. J., 43A (2001), 109–123, arXiv: nlin.SI/0001054 | DOI | MR | Zbl
[33] Ormerod C. M., “A study of the associated linear problem for $q$-${\rm P}_{\rm V}$”, J. Phys. A: Math. Theor., 44 (2011), 025201, 26 pp., arXiv: 0911.5552 | DOI | Zbl
[34] Ormerod C. M., “The lattice structure of connection preserving deformations for $q$-Painlevé equations I”, SIGMA, 7 (2011), 045, 22 pp., arXiv: 1010.3036 | DOI | MR | Zbl
[35] Ormerod C. M., “Symmetries in connection preserving deformations”, SIGMA, 7 (2011), 049, 13 pp., arXiv: 1101.5422 | DOI | MR | Zbl
[36] Ormerod C. M., “Reductions of lattice mKdV to $q$-${\rm P}_{\rm VI}$”, Phys. Lett. A, 376 (2012), 2855–2859, arXiv: 1112.2419 | DOI | MR | Zbl
[37] Ormerod C. M., “Symmetries and special solutions of reductions of the lattice potential KdV equation”, SIGMA, 10 (2014), 002, 19 pp., arXiv: 1308.4233 | DOI | MR | Zbl
[38] Ormerod C. M., van der Kamp P. H., Hietarinta J., Quispel G. R. W., “Twisted reductions of integrable lattice equations, and their Lax representations”, Nonlinearity, 27 (2014), 1367–1390, arXiv: 1307.5208 | DOI | MR | Zbl
[39] Ormerod C. M., van der Kamp P. H., Quispel G. R. W., “Discrete Painlevé equations and their Lax pairs as reductions of integrable lattice equations”, J. Phys. A: Math. Theor., 46 (2013), 095204, 22 pp., arXiv: 1209.4721 | DOI | MR | Zbl
[40] Papageorgiou V. G., Nijhoff F.W., Grammaticos B., Ramani A., “Isomonodromic deformation problems for discrete analogues of Painlevé equations”, Phys. Lett. A, 164 (1992), 57–64 | DOI | MR
[41] Papageorgiou V. G., Tongas A. G., Veselov A. P., “Yang–Baxter maps and symmetries of integrable equations on quad-graphs”, J. Math. Phys., 47 (2006), 083502, 16 pp., arXiv: math.QA/0605206 | DOI | MR | Zbl
[42] Praagman C., “Fundamental solutions for meromorphic linear difference equations in the complex plane, and related problems”, J. Reine Angew. Math., 369 (1986), 101–109 | DOI | MR | Zbl
[43] Rains E. M., “An isomonodromy interpretation of the hypergeometric solution of the elliptic Painlevé equation (and generalizations)”, SIGMA, 7 (2011), 088, 24 pp., arXiv: 0807.0258 | DOI | MR | Zbl
[44] Rains E. M., Generalized Hitchin systems on rational surfaces, arXiv: 1307.4033
[45] Ramis J.-P., Martinet J., “Théorie de Galois différentielle et resommation”, Computer Algebra and Differential Equations, Comput. Math. Appl., Academic Press, London, 1990, 117–214 | MR
[46] Sakai H., “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR | Zbl
[47] Sakai H., “A $q$-analog of the Garnier system”, Funkcial. Ekvac., 48 (2005), 273–297 | DOI | MR | Zbl
[48] Sauloy J., “Galois theory of Fuchsian $q$-difference equations”, Ann. Sci. École Norm. Sup. (4), 36 (2003), 925–968, arXiv: math.QA/0210221 | DOI | MR | Zbl
[49] Suris Yu. B., Veselov A. P., “Lax matrices for Yang–Baxter maps”, J. Nonlinear Math. Phys., 10:2 (2003), 223–230, arXiv: math.QA/0304122 | DOI | MR
[50] van der Kamp P. H., “Initial value problems for lattice equations”, J. Phys. A: Math. Theor., 42 (2009), 404019, 16 pp. | DOI | MR | Zbl
[51] van der Put M., Reversat M., “Galois theory of $q$-difference equations”, Ann. Fac. Sci. Toulouse Math. (6), 16 (2007), 665–718, arXiv: math.QA/0507098 | DOI | MR | Zbl
[52] van der Put M., Singer M. F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, 328, Springer-Verlag, Berlin, 2003 | DOI | MR | Zbl
[53] Veselov A. P., “Yang–Baxter maps and integrable dynamics”, Phys. Lett. A, 314 (2003), 214–221, arXiv: math.QA/0205335 | DOI | MR | Zbl
[54] Witte N. S., Ormerod C. M., “Construction of a Lax pair for the $E_6^{(1)}$ $q$-Painlevé system”, SIGMA, 8 (2012), 097, 27 pp., arXiv: 1207.0041 | DOI | MR | Zbl
[55] Yamada Y., “A Lax formalism for the elliptic difference Painlevé equation”, SIGMA, 5 (2009), 042, 15 pp., arXiv: 0811.1796 | DOI | MR | Zbl
[56] Yamada Y., “Lax formalism for $q$-Painlevé equations with affine Weyl group symmetry of type $E^{(1)}_n$”, Int. Math. Res. Not., 2011 (2011), 3823–3838, arXiv: 1004.1687 | DOI | MR | Zbl