@article{SIGMA_2016_12_a108,
author = {Govind Menon and Thomas Trogdon},
title = {Smoothed {Analysis} for the {Conjugate} {Gradient} {Algorithm}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a108/}
}
Govind Menon; Thomas Trogdon. Smoothed Analysis for the Conjugate Gradient Algorithm. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a108/
[1] Deift P. A., Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lecture Notes in Mathematics, 3, New York University, Courant Institute of Mathematical Sciences, New York; Amer. Math. Soc., 1999 | DOI | MR
[2] Deift P. A., Menon G., Olver S., Trogdon T., “Universality in numerical computations with random data”, Proc. Natl. Acad. Sci. USA, 111 (2014), 14973–14978, arXiv: 1407.3829 | DOI | MR
[3] Deift P. A., Trogdon T., Universality for the {T}oda algorithm to compute the eigenvalues of a random matrix, arXiv: 1604.07384
[4] Deift P. A., Trogdon T., Menon G., “On the condition number of the critically-scaled Laguerre unitary ensemble”, Discrete Contin. Dyn. Syst., 36 (2016), 4287–4347, arXiv: 1507.00750 | DOI | MR | Zbl
[5] Edelman A., “Eigenvalues and condition numbers of random matrices”, SIAM J. Matrix Anal. Appl., 9 (1988), 543–560 | DOI | MR | Zbl
[6] Forrester P. J., “The spectrum edge of random matrix ensembles”, Nuclear Phys. B, 402 (1993), 709–728 | DOI | MR | Zbl
[7] Golub G. H., Van Loan C. F., Matrix computations, Johns Hopkins Studies in the Mathematical Sciences, 4th ed., Johns Hopkins University Press, Baltimore, MD, 2013 | MR | Zbl
[8] Greenbaum A., “Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences”, Linear Algebra Appl., 113 (1989), 7–63 | DOI | MR | Zbl
[9] Greenbaum A., Strakoš Z., “Predicting the behavior of finite precision Lanczos and conjugate gradient computations”, SIAM J. Matrix Anal. Appl., 13 (1992), 121–137 | DOI | MR | Zbl
[10] Hestenes M. R., Stiefel E., “Methods of conjugate gradients for solving linear systems”, J. Research Nat. Bur. Standards, 49 (1952), 409–436 | DOI | MR | Zbl
[11] Liesen J., Strakoš Z., Krylov subspace methods. Principles and analysis, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2013 | MR | Zbl
[12] Marchenko V. A., Pastur L. A., “Distribution of eigenvalues for some sets of random matrices”, Math. USSR Sb., 1 (1967), 457–483 | DOI
[13] Olver F. W. J., Lozier D. W., Boisvert R. F., Clark C. W. (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010 http://dlmf.nist.gov/ | MR
[14] Pfrang C. W., Deift P., Menon G., How long does it take to compute the eigenvalues of a random symmetric matrix?, Random Matrix Theory, Interacting Particle Systems, and Integrable Systems, Math. Sci. Res. Inst. Publ., 65, Cambridge University Press, New York, 2014, 411–442, arXiv: 1203.4635 | MR | Zbl
[15] Sagun L., Trogdon T., LeCun Y., Universality in halting time and its applications in optimization, arXiv: 1511.06444
[16] Sankar A., Spielman D. A., Teng S. H., “Smoothed analysis of the condition numbers and growth factors of matrices”, SIAM J. Matrix Anal. Appl., 28 (2006), 446–476, arXiv: cs.NA/0310022 | DOI | MR | Zbl
[17] Simon B., Trace ideals and their applications, Mathematical Surveys and Monographs, 120, 2nd ed., Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl
[18] Spielman D., Teng S. H., “Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time”, Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, ACM, New York, 2001, 296–305 | DOI | MR | Zbl
[19] Spielman D. A., Teng S. H., “Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time”, J. ACM, 51 (2004), 385–463, arXiv: cs.DS/0111050 | DOI | MR | Zbl
[20] Szeg{ő} G., Orthogonal polynomials, American Mathematical Society, Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, RI, 1975
[21] Tracy C. A., Widom H., “Level-spacing distributions and the Airy kernel”, Comm. Math. Phys., 159 (1994), 151–174, arXiv: hep-th/9211141 | DOI | MR | Zbl
[22] Wilkinson J. H., “Error analysis of direct methods of matrix inversion”, J. ACM, 8 (1961), 281–330 | DOI | MR | Zbl