From Conformal Group to Symmetries of Hypergeometric Type Equations
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that properties of hypergeometric type equations become transparent if they are derived from appropriate 2nd order partial differential equations with constant coefficients. In particular, we deduce the symmetries of the hypergeometric and Gegenbauer equation from conformal symmetries of the 4- and 3-dimensional Laplace equation. We also derive the symmetries of the confluent and Hermite equation from the so-called Schrödinger symmetries of the heat equation in 2 and 1 dimension. Finally, we also describe how properties of the ${}_0F_1$ equation follow from the Helmholtz equation in 2 dimensions.
Keywords: Laplace equation; hypergeometric equation; confluent equation; Kummer's table; Lie algebra; conformal group.
@article{SIGMA_2016_12_a107,
     author = {Jan Derezi\'nski and Przemys{\l}aw Majewski},
     title = {From {Conformal} {Group} to {Symmetries} of {Hypergeometric} {Type} {Equations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a107/}
}
TY  - JOUR
AU  - Jan Dereziński
AU  - Przemysław Majewski
TI  - From Conformal Group to Symmetries of Hypergeometric Type Equations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a107/
LA  - en
ID  - SIGMA_2016_12_a107
ER  - 
%0 Journal Article
%A Jan Dereziński
%A Przemysław Majewski
%T From Conformal Group to Symmetries of Hypergeometric Type Equations
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a107/
%G en
%F SIGMA_2016_12_a107
Jan Dereziński; Przemysław Majewski. From Conformal Group to Symmetries of Hypergeometric Type Equations. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a107/

[1] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[2] Beukers F., Hypergeometric functions, how special are they?, Notices Amer. Math. Soc., 61 (2014), 48–56 | DOI | MR | Zbl

[3] Bôcher M., Über die Reihenentwickelungen Potentialtheorie, Teubner, Leipzig, 1894

[4] Bod E., Algebraic $\mathcal{A}$-hypergeometric functions and their monodromy, Ph.D. Thesis, Utrecht University, 2013

[5] Cooper F., Khare A., Sukhatme U., Supersymmetry in quantum mechanics, World Sci. Publ. Co., Inc., River Edge, NJ, 2001 | DOI | MR | Zbl

[6] Dereziński J., “Hypergeometric type functions and their symmetries”, Ann. Henri Poincaré, 15 (2014), 1569–1653, arXiv: 1305.3113 | DOI | MR | Zbl

[7] Dereziński J., Wrochna M., “Exactly solvable Schrödinger operators”, Ann. Henri Poincaré, 12 (2011), 397–418, arXiv: 1009.0541 | DOI | MR | Zbl

[8] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. I, McGraw-Hill Book Company, New York, 1953

[9] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. II, McGraw-Hill Book Company, New York, 1953

[10] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. III, McGraw-Hill Book Company, New York, 1955 | Zbl

[11] Flügge S., Practical quantum mechanics, Classics in Mathematics, 177, Springer-Verlag, Berlin, 1999 | DOI | MR

[12] Hagen C. R., “Scale and conformal transformations in galilean-covariant field theory”, Phys. Rev. D, 5 (1972), 377–388 | DOI

[13] Hochstadt H., The functions of mathematical physics, Pure and Applied Mathematics, 23, Wiley-Interscience, New York–London–Sydney, 1971 | MR | Zbl

[14] Infeld L., Hull T. E., “The factorization method”, Rev. Modern Phys., 23 (1951), 21–68 | DOI | MR | Zbl

[15] Kalnins E. G., Miller W. (Jr.), “Lie theory and the wave equation in space-time. IV. The Klein–Gordon equation and the Poincaré group”, J. Math. Phys., 19 (1978), 1233–1246 | DOI | MR | Zbl

[16] Kalnins E. G., Miller W. (Jr.), “The wave equation and separation of variables on the complex sphere $S_{4}$”, J. Math. Anal. Appl., 83 (1981), 449–469 | DOI | MR | Zbl

[17] Kalnins E. G., Miller W. (Jr.), Reid G. J., “Separation of variables for complex Riemannian spaces of constant curvature. I. Orthogonal separable coordinates for ${\rm S}_{nC}$ and ${\rm E}_{nC}$”, Proc. Roy. Soc. London Ser. A, 394 (1984), 183–206 | DOI | MR | Zbl

[18] Kobayashi S., Nomizu K., Foundations of differential geometry, v. I, John Wiley Sons, Inc., New York–London–Sydney, 1963 | MR | Zbl

[19] Kobayashi S., Nomizu K., Foundations of differential geometry, v. II, John Wiley Sons, Inc., New York–London–Sydney, 1969 | MR | Zbl

[20] Koornwinder T. H., “Fractional integral and generalized Stieltjes transforms for hypergeometric functions as transmutation operators”, SIGMA, 11 (2015), 074, 22 pp., arXiv: 1504.08144 | DOI | MR | Zbl

[21] Kummer E. E., “Über die hypergeometrische Reihe $1+\frac{\alpha\cdot \beta}{1\cdot \gamma}x+ \frac{\alpha(\alpha+1)\beta(\beta+1)}{1\cdot 2\cdot \gamma (\gamma+1)}x^2+\frac{\alpha(\alpha+1)(\alpha+2)\beta(\beta+1)(\beta+2)}{1\cdot 2\cdot 3\cdot \gamma (\gamma+1)(\gamma+2}x^3+\cdots$”, J. Reine Angew. Math., 15 (1836), 39–83 | DOI | MR | Zbl

[22] Kummer E. E., “Über die hypergeometrische {R}eihe $1+\frac{\alpha\cdot \beta}{1\cdot \gamma}x+ \frac{\alpha(\alpha+1)\beta(\beta+1)}{1\cdot 2\cdot \gamma (\gamma+1)}x^2+\frac{\alpha(\alpha+1)(\alpha+2)\beta(\beta+1)(\beta+2)}{1\cdot 2\cdot 3\cdot \gamma (\gamma+1)(\gamma+2}x^3+\cdots$”, J. Reine Angew. Math., 15 (1836), 127–172 | DOI | MR | Zbl

[23] Kuznetsov V., PG course on special functions and their symmetries, , 2003 http://www1.maths.leeds.ac.uk/k̃isilv/courses/sp-funct.pdf

[24] Lie S., “Ueber die Integration durch bestimmte Integration von einer Classe linearer partieller Differentialgleichungen”, Arch. Math. Naturvid., 6 (1881), 328–368

[25] Lievens S., Rao K. S., Van der Jeugt J., “The finite group of the Kummer solutions”, Integral Transforms Spec. Funct., 16 (2005), 153–158 | DOI | MR | Zbl

[26] Magnus W., Oberhettinger F., Soni R. P., Formulas and theorems for the special functions of mathematical physics, Die Grundlehren der mathematischen Wissenschaften, 52, 3rd ed., Springer-Verlag, New York, 1966 | DOI | MR | Zbl

[27] Miller W. (Jr.), Lie theory and special functions, Mathematics in Science and Engineering, 43, Academic Press, New York–London, 1968 | MR | Zbl

[28] Miller W. (Jr.), Symmetry groups and their applications, Pure and Applied Mathematics, 50, Academic Press, New York–London, 1972 | MR | Zbl

[29] Miller W. (Jr.), “Lie theory and generalizations of the hypergeometric functions”, SIAM J. Appl. Math., 25 (1973), 226–235 | DOI | MR | Zbl

[30] Miller W. (Jr.), “Symmetries of differential equations. The hypergeometric and Euler–Darboux equations”, SIAM J. Math. Anal., 4 (1973), 314–328 | DOI | MR | Zbl

[31] Miller W. (Jr.), Symmetry and separation of variables, Encyclopedia of Mathematics and its Applications, 4, Addison-Wesley Publishing Co., Reading, Mass.–London–Amsterdam, 1977 | MR | Zbl

[32] Morse P. M., Feshbach H., Methods of theoretical physics, v. I, II, McGraw-Hill Book Co., Inc., New York–Toronto–London, 1953 | MR | Zbl

[33] Niederer U., “The maximal kinematical invariance group of the free Schrödinger equation”, Helv. Phys. Acta, 45 (1972), 802–810 | MR

[34] Nikiforov A. F., Uvarov V. B., Special functions of mathematical physics. A unified introduction with applications, Birkhäuser Verlag, Basel, 1988 | DOI | MR | Zbl

[35] Olver F. W. J., Lozier D. W., Boisvert R. F., Clark C. W. (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010 http://dlmf.nist.gov/ | MR

[36] Olver P. J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1986 | DOI | MR | Zbl

[37] Ørsted B., “Conformally invariant differential equations and projective geometry”, J. Funct. Anal., 44 (1981), 1–23 | DOI | MR

[38] Rainville E. D., Special functions, The Macmillan Co., New York, 1960 | MR | Zbl

[39] Saito M., “Symmetry algebras of normal $\mathcal A$-hypergeometric systems”, Hokkaido Math. J., 25 (1996), 591–619 | DOI | MR | Zbl

[40] Schrödinger E., “A method of determining quantum-mechanical eigenvalues and eigenfunctions”, Proc. Roy. Irish Acad. Sect. A, 46 (1940), 9–16 | MR

[41] Taylor M. E., Noncommutative harmonic analysis, Mathematical Surveys and Monographs, 22, Amer. Math. Soc., Providence, RI, 1986 | DOI | MR | Zbl

[42] Truesdell C., An essay toward a unified theory of special functions based upon the functional equation $(\partial/\partial z)F(z,\alpha)=F(z,\alpha+1)$, Annals of Mathematics Studies, 18, Princeton University Press, Princeton, NJ, 1948 | MR

[43] Vilenkin N. Ja., Special functions and the theory of group representations, Translations of Mathematical Monographs, 22, Amer. Math. Soc., Providence, RI, 1968 | MR | Zbl

[44] Vilenkin N.Ja., Klimyk A. U., Representation of Lie groups and special functions, v. 1, Mathematics and its Applications (Soviet Series), 72, Simplest Lie groups, special functions and integral transforms, Kluwer Academic Publishers Group, Dordrecht, 1991 | DOI | MR | Zbl

[45] Wawrzyńczyk A., Współczesna teoria funkcji specjalnych, Biblioteka Matematyczna, 52, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1978

[46] Weisner L., “Generating functions for Hermite functions”, Canad. J. Math., 11 (1959), 141–147 | DOI | MR | Zbl

[47] Weisner L., “Generating functions for Bessel functions”, Canad. J. Math., 11 (1959), 148–155 | DOI | MR | Zbl

[48] Whittaker E. T., Watson G. N., A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996 | DOI | MR | Zbl