@article{SIGMA_2016_12_a106,
author = {Kamil Niedzia{\l}omski},
title = {Geometry of $G${-Structures} via the {Intrinsic} {Torsion}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a106/}
}
Kamil Niedziałomski. Geometry of $G$-Structures via the Intrinsic Torsion. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a106/
[1] Besse A. L., Einstein manifolds, Classics in Mathematics, Springer-Verlag, Berlin, 2008 | DOI | MR | Zbl
[2] Chinea D., Gonzalez C., “A classification of almost contact metric manifolds”, Ann. Mat. Pura Appl. (4), 156 (1990), 15–36 | DOI | MR | Zbl
[3] Chiossi S., Salamon S., “The intrinsic torsion of $\rm SU(3)$ and ${\rm G}_2$ structures”, Differential Geometry (Valencia, 2001), World Sci. Publ., River Edge, NJ, 2002, 115–133, arXiv: math.DG/0202282 | DOI | MR | Zbl
[4] Cleyton R., Swann A., “Einstein metrics via intrinsic or parallel torsion”, Math. Z., 247 (2004), 513–528, arXiv: math.DG/0211446 | DOI | MR | Zbl
[5] Davidov J., Muškarov O., “Harmonic almost-complex structures on twistor spaces”, Israel J. Math., 131 (2002), 319–332 | DOI | MR | Zbl
[6] Eells J. (Jr.), Sampson J. H., “Harmonic mappings of Riemannian manifolds”, Amer. J. Math., 86 (1964), 109–160 | DOI | MR | Zbl
[7] Falcitelli M., Farinola A., Salamon S., “Almost-Hermitian geometry”, Differential Geom. Appl., 4 (1994), 259–282 | DOI | MR | Zbl
[8] Fernández M., Gray A., “Riemannian manifolds with structure group ${\rm G}_{2}$”, Ann. Mat. Pura Appl. (4), 132 (1982), 19–45 | DOI | MR | Zbl
[9] Gil-Medrano O., “Relationship between volume and energy of vector fields”, Differential Geom. Appl., 15 (2001), 137–152 | DOI | MR | Zbl
[10] Gil-Medrano O., González-Dávila J. C., Vanhecke L., “Harmonicity and minimality of oriented distributions”, Israel J. Math., 143 (2004), 253–279 | DOI | MR | Zbl
[11] González-Dávila J. C., “Harmonicity and minimality of distributions on Riemannian manifolds via the intrinsic torsion”, Rev. Mat. Iberoam., 30 (2014), 247–275 | DOI | MR | Zbl
[12] González-Dávila J. C., Martín Cabrera F., “Harmonic $G$-structures”, Math. Proc. Cambridge Philos. Soc., 146 (2009), 435–459 | DOI | MR | Zbl
[13] Gray A., Hervella L. M., “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Mat. Pura Appl. (4), 123 (1980), 35–58 | DOI | MR | Zbl
[14] Han D.-S., Lee E.-H., “Harmonic Gauss map and Hopf fibrations”, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math., 5 (1998), 55–63 | MR
[15] Martín Cabrera F., “Special almost Hermitian geometry”, J. Geom. Phys., 55 (2005), 450–470, arXiv: math.DG/0409167 | DOI | MR | Zbl
[16] Martín Cabrera F., Swann A., “The intrinsic torsion of almost quaternion-Hermitian manifolds”, Ann. Inst. Fourier (Grenoble), 58 (2008), 1455–1497, arXiv: 0707.0939 | DOI | MR | Zbl
[17] Naveira A. M., “A classification of Riemannian almost-product manifolds”, Rend. Mat. (7), 3 (1983), 577–592 | MR | Zbl
[18] Niedziałomski K., “On the frame bundle adapted to a submanifold”, Math. Nachr., 288 (2015), 648–664, arXiv: 1311.6172 | DOI | MR | Zbl
[19] Vergara-Diaz E., Wood C. M., “Harmonic almost contact structures”, Geom. Dedicata, 123 (2006), 131–151, arXiv: math.DG/0602533 | DOI | MR | Zbl
[20] Wood C. M., “Harmonic almost-complex structures”, Compositio Math., 99 (1995), 183–212 | MR | Zbl
[21] Wood C. M., “Harmonic sections of homogeneous fibre bundles”, Differential Geom. Appl., 19 (2003), 193–210 | DOI | MR | Zbl