@article{SIGMA_2016_12_a104,
author = {Tamara Grava and Alexander Its and Andrei Kapaev and Francesco Mezzadri},
title = {On the {Tracy{\textendash}Widom}$_\beta$ {Distribution} for $\beta=6$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a104/}
}
TY - JOUR AU - Tamara Grava AU - Alexander Its AU - Andrei Kapaev AU - Francesco Mezzadri TI - On the Tracy–Widom$_\beta$ Distribution for $\beta=6$ JO - Symmetry, integrability and geometry: methods and applications PY - 2016 VL - 12 UR - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a104/ LA - en ID - SIGMA_2016_12_a104 ER -
%0 Journal Article %A Tamara Grava %A Alexander Its %A Andrei Kapaev %A Francesco Mezzadri %T On the Tracy–Widom$_\beta$ Distribution for $\beta=6$ %J Symmetry, integrability and geometry: methods and applications %D 2016 %V 12 %U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a104/ %G en %F SIGMA_2016_12_a104
Tamara Grava; Alexander Its; Andrei Kapaev; Francesco Mezzadri. On the Tracy–Widom$_\beta$ Distribution for $\beta=6$. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a104/
[1] Baik J., Buckingham R., DiFranco J., “Asymptotics of Tracy–Widom distributions and the total integral of a Painlevé {II} function”, Comm. Math. Phys., 280 (2008), 463–497, arXiv: 0704.3636 | DOI | MR | Zbl
[2] Bloemendal A., Virág B., “Limits of spiked random matrices I”, Probab. Theory Related Fields, 156 (2013), 795–825, arXiv: 1011.1877 | DOI | MR | Zbl
[3] Borot G., Eynard B., Majumdar S. N., Nadal C., “Large deviations of the maximal eigenvalue of random matrices”, J. Stat. Mech. Theory Exp., 2011 (2011), P11024, 56 pp., arXiv: 1009.1945 | DOI | MR
[4] Chen Y., Manning S. M., “Asymptotic level spacing of the Laguerre ensemble: a Coulomb fluid approach”, J. Phys. A: Math. Gen., 27 (1994), 3615–3620, arXiv: cond-mat/9309010 | DOI | MR | Zbl
[5] Deift P., Its A., Krasovsky I., “Asymptotics of the Airy-kernel determinant”, Comm. Math. Phys., 278 (2008), 643–678, arXiv: math.FA/0609451 | DOI | MR | Zbl
[6] Deift P., Zhou X., “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. of Math., 137 (1993), 295–368 | DOI | MR | Zbl
[7] Dumitriu I., Edelman A., “Matrix models for beta ensembles”, J. Math. Phys., 43 (2002), 5830–5847, arXiv: math-ph/0206043 | DOI | MR | Zbl
[8] Flaschka H., Newell A. C., “Monodromy- and spectrum-preserving deformations. I”, Comm. Math. Phys., 76 (1980), 65–116 | DOI | MR | Zbl
[9] Fokas A. S., Its A. R., Kapaev A. A., Novokshenov V. Yu., Painlevé transcendents: the Riemann–Hilbert approach, Mathematical Surveys and Monographs, 128, Amer. Math. Soc., Providence, RI, 2006 | DOI | MR
[10] Forrester P. J., “Exact results and universal asymptotics in the Laguerre random matrix ensemble”, J. Math. Phys., 35 (1994), 2539–2551 | DOI | MR | Zbl
[11] Forrester P. J., “Asymptotics of spacing distributions 50 years later”, Random matrix theory, interacting particle systems, and integrable systems, Math. Sci. Res. Inst. Publ., 65, Cambridge University Press, New York, 2014, 199–222, arXiv: 1204.3225 | MR | Zbl
[12] Hastings S. P., McLeod J. B., “A boundary value problem associated with the second Painlevé transcendent and the Korteweg–de Vries equation”, Arch. Rational Mech. Anal., 73 (1980), 31–51 | DOI | MR | Zbl
[13] Ince E. L., Ordinary differential equations, Dover Publications, New York, 1944 | MR | Zbl
[14] Nagoya H., “Hypergeometric solutions to Schrödinger equations for the quantum Painlevé equations”, J. Math. Phys., 52 (2011), 083509, 16 pp., arXiv: 1109.1645 | DOI | MR | Zbl
[15] Okamoto K., “Polynomial Hamiltonians associated with Painlevé equations. II. Differential equations satisfied by polynomial Hamiltonians”, Proc. Japan Acad. Ser. A Math. Sci., 56 (1980), 367–371 | DOI | MR | Zbl
[16] Ramírez J. A., Rider B., Virág B., “Beta ensembles, stochastic Airy spectrum, and a diffusion”, J. Amer. Math. Soc., 24 (2011), 919–944, arXiv: math.PR/0607331 | DOI | MR | Zbl
[17] Rumanov I., “Beta ensembles, quantum Painlevé equations and isomonodromy systems”, Algebraic and Analytic Aspects of Integrable Systems and Painlevé Equations, Contemp. Math., 651, Amer. Math. Soc., Providence, RI, 2015, 125–155, arXiv: 1408.3847 | DOI | MR | Zbl
[18] Rumanov I., “Classical integrability for beta-ensembles and general Fokker–Planck equations”, J. Math. Phys., 56 (2015), 013508, 16 pp., arXiv: 1306.2117 | DOI | MR | Zbl
[19] Rumanov I., “Painlevé representation of Tracy–Widom$_\beta$ distribution for $\beta=6$”, Comm. Math. Phys., 342 (2016), 843–868, arXiv: 1408.3779 | DOI | MR | Zbl
[20] Slavyanov S. Y., “Painlevé equations as classical analogues of Heun equations”, J. Phys. A: Math. Gen., 29 (1996), 7329–7335 | DOI | MR | Zbl
[21] Suleimanov B. I., ““Quantizations” of the second Painlevé equation and the problem of the equivalence of its $L$-$A$ pairs”, Theoret. Math. Phys., 156 (2008), 1280–1291 | DOI | MR | Zbl
[22] Tracy C. A., Widom H., “Level-spacing distributions and the Airy kernel”, Comm. Math. Phys., 159 (1994), 151–174, arXiv: hep-th/9211141 | DOI | MR | Zbl
[23] Tracy C. A., Widom H., “On orthogonal and symplectic matrix ensembles”, Comm. Math. Phys., 177 (1996), 727–754, arXiv: solv-int/9509007 | DOI | MR | Zbl
[24] Valkó B., Virág B., “Continuum limits of random matrices and the Brownian carousel”, Invent. Math., 177 (2009), 463–508, arXiv: 0712.2000 | DOI | MR | Zbl
[25] Wasow W., Asymptotic expansions for ordinary differential equations, Pure and Applied Mathematics, 14, Interscience Publishers John Wiley Sons, Inc., New York–London–Sydney, 1965 | MR | Zbl
[26] Zabrodin A., Zotov A., “Classical-quantum correspondence and functional relations for Painlevé equations”, Constr. Approx., 41 (2015), 385–423, arXiv: 1212.5813 | DOI | MR | Zbl