@article{SIGMA_2016_12_a103,
author = {Reynaldo Castaneira and Pablo Padilla and H\'ector S\'anchez-Morgado},
title = {Continuous {Choreographies} as {Limiting} {Solutions} of $N$-body {Type} {Problems} with {Weak} {Interaction}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a103/}
}
TY - JOUR AU - Reynaldo Castaneira AU - Pablo Padilla AU - Héctor Sánchez-Morgado TI - Continuous Choreographies as Limiting Solutions of $N$-body Type Problems with Weak Interaction JO - Symmetry, integrability and geometry: methods and applications PY - 2016 VL - 12 UR - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a103/ LA - en ID - SIGMA_2016_12_a103 ER -
%0 Journal Article %A Reynaldo Castaneira %A Pablo Padilla %A Héctor Sánchez-Morgado %T Continuous Choreographies as Limiting Solutions of $N$-body Type Problems with Weak Interaction %J Symmetry, integrability and geometry: methods and applications %D 2016 %V 12 %U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a103/ %G en %F SIGMA_2016_12_a103
Reynaldo Castaneira; Pablo Padilla; Héctor Sánchez-Morgado. Continuous Choreographies as Limiting Solutions of $N$-body Type Problems with Weak Interaction. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a103/
[1] Barutello V., Terracini S., “Action minimizing orbits in the $n$-body problem with simple choreography constraint”, Nonlinearity, 17 (2004), 2015–2039, arXiv: math.DS/0307088 | DOI | MR | Zbl
[2] Buck G., “Most smooth closed space curves contain approximate solutions of the $n$-body problem”, Nature, 395 (1998), 51–53 | DOI
[3] Chenciner A., Desolneux N., “Minima de l'intégrale d'action et équilibres relatifs de $n$ corps”, C. R. Acad. Sci. Paris Sér. I Math., 326 (1998), 1209–1212 | DOI | MR | Zbl
[4] Chenciner A., Gerver J., Montgomery R., Simó C., “Simple choreographic motions of $N$ bodies: a preliminary study”, Geometry, Mechanics, and Dynamics, Springer, New York, 2002, 287–308 | DOI | MR | Zbl
[5] Chenciner A., Montgomery R., “A remarkable periodic solution of the three-body problem in the case of equal masses”, Ann. of Math., 152 (2000), 881–901, arXiv: math.DS/0011268 | DOI | MR | Zbl
[6] Perko L. M., Walter E. L., “Regular polygon solutions of the $N$-body problem”, Proc. Amer. Math. Soc., 94 (1985), 301–309 | DOI | MR | Zbl
[7] Xie Z., Zhang S., “A simpler proof of regular polygon solutions of the $N$-body problem”, Phys. Lett. A, 277 (2000), 156–158 | DOI | MR | Zbl
[8] Yu G., Simple choreography solutions of the Newtonian $N$-body problem, arXiv: 1509.04999