@article{SIGMA_2016_12_a102,
author = {Jean C. Guella and Valdir A. Menegatto and Ana P. Peron},
title = {Strictly {Positive} {Definite} {Kernels} on a {Product} of {Spheres} {II}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a102/}
}
TY - JOUR AU - Jean C. Guella AU - Valdir A. Menegatto AU - Ana P. Peron TI - Strictly Positive Definite Kernels on a Product of Spheres II JO - Symmetry, integrability and geometry: methods and applications PY - 2016 VL - 12 UR - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a102/ LA - en ID - SIGMA_2016_12_a102 ER -
%0 Journal Article %A Jean C. Guella %A Valdir A. Menegatto %A Ana P. Peron %T Strictly Positive Definite Kernels on a Product of Spheres II %J Symmetry, integrability and geometry: methods and applications %D 2016 %V 12 %U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a102/ %G en %F SIGMA_2016_12_a102
Jean C. Guella; Valdir A. Menegatto; Ana P. Peron. Strictly Positive Definite Kernels on a Product of Spheres II. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a102/
[1] Barbosa V. S., Menegatto V. A., “Strictly positive definite kernels on compact two-point homogeneous spaces”, Math. Inequal. Appl., 19 (2016), 743–756, arXiv: 1505.00591 | DOI | MR | Zbl
[2] Barbosa V. S., Menegatto V. A., “Strict positive definiteness on a product of compact two-point homogeneous spaces”, Integral Transform. Spec. Funct. (to appear) , arXiv: 1605.07071 | MR
[3] Beatson R. K., zu Castell W., Dimension hopping and families of strictly positive definite zonal basis functions on spheres, arXiv: 1510.08658
[4] Beatson R. K., zu Castell W., “One-step recurrences for stationary random fields on the sphere”, SIGMA, 12 (2016), 043, 19 pp., arXiv: 1601.07743 | DOI | MR | Zbl
[5] Berg C., Porcu E., “From Schoenberg coefficients to Schoenberg functions”, Constr. Approx. (to appear) , arXiv: 1505.05682 | DOI
[6] Chen D., Menegatto V. A., Sun X., “A necessary and sufficient condition for strictly positive definite functions on spheres”, Proc. Amer. Math. Soc., 131 (2003), 2733–2740 | DOI | MR | Zbl
[7] Emonds J., Führ H., “Strictly positive definite functions on compact abelian groups”, Proc. Amer. Math. Soc., 139 (2011), 1105–1113, arXiv: 1002.3017 | DOI | MR | Zbl
[8] Gangolli R., “Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Brownian motion of several parameters”, Ann. Inst. H. Poincaré Sect. B, 3 (1967), 121–226 | MR | Zbl
[9] Gneiting T., “Nonseparable, stationary covariance functions for space-time data”, J. Amer. Statist. Assoc., 97 (2002), 590–600 | DOI | MR | Zbl
[10] Gneiting T., “Strictly and non-strictly positive definite functions on spheres”, Bernoulli, 19 (2013), 1327–1349, arXiv: 1111.7077 | DOI | MR | Zbl
[11] Guella J. C., Menegatto V. A., “Strictly positive definite kernels on a product of spheres”, J. Math. Anal. Appl., 435 (2016), 286–301, arXiv: 1505.03695 | DOI | MR | Zbl
[12] Guella J. C., Menegatto V. A., Peron A. P., “An extension of a theorem of Schoenberg to products of spheres”, Banach J. Math. Anal., 10 (2016), 671–685, arXiv: 1503.08174 | DOI | MR | Zbl
[13] Guella J. C., Menegatto V. A., Peron A. P., “Strictly positive definite kernels on a product of circles”, Positivity (to appear) , arXiv: 1505.01169 | DOI
[14] Menegatto V. A., Oliveira C. P., Peron A. P., “Strictly positive definite kernels on subsets of the complex plane”, Comput. Math. Appl., 51 (2006), 1233–1250 | DOI | MR | Zbl
[15] Müller C., Analysis of spherical symmetries in Euclidean spaces, Applied Mathematical Sciences, 129, Springer-Verlag, New York, 1998 | DOI | MR
[16] Ron A., Sun X., “Strictly positive definite functions on spheres in Euclidean spaces”, Math. Comp., 65 (1996), 1513–1530 | DOI | MR | Zbl
[17] Schoenberg I. J., “Positive definite functions on spheres”, Duke Math. J., 9 (1942), 96–108 | DOI | MR | Zbl
[18] Shapiro V. L., Fourier series in several variables with applications to partial differential equations, Chapman Hall/CRC Applied Mathematics and Nonlinear Science Series, CRC Press, Boca Raton, FL, 2011 | DOI | MR | Zbl
[19] Sun X., “Strictly positive definite functions on the unit circle”, Math. Comp., 74 (2005), 709–721 | DOI | MR | Zbl
[20] Szeg{ő} G., Orthogonal polynomials, Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, RI, 1975 | MR