Strictly Positive Definite Kernels on a Product of Spheres II
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present, among other things, a necessary and sufficient condition for the strict positive definiteness of an isotropic and positive definite kernel on the cartesian product of a circle and a higher dimensional sphere. The result complements similar results previously obtained for strict positive definiteness on a product of circles [Positivity, to appear, arXiv:1505.01169] and on a product of high dimensional spheres [J. Math. Anal. Appl. 435 (2016), 286–301, arXiv:1505.03695].
Keywords: positive definite kernels; strictly positive definiteness; isotropy; covariance functions; sphere; circle.
@article{SIGMA_2016_12_a102,
     author = {Jean C. Guella and Valdir A. Menegatto and Ana P. Peron},
     title = {Strictly {Positive} {Definite} {Kernels} on a {Product} of {Spheres} {II}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a102/}
}
TY  - JOUR
AU  - Jean C. Guella
AU  - Valdir A. Menegatto
AU  - Ana P. Peron
TI  - Strictly Positive Definite Kernels on a Product of Spheres II
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a102/
LA  - en
ID  - SIGMA_2016_12_a102
ER  - 
%0 Journal Article
%A Jean C. Guella
%A Valdir A. Menegatto
%A Ana P. Peron
%T Strictly Positive Definite Kernels on a Product of Spheres II
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a102/
%G en
%F SIGMA_2016_12_a102
Jean C. Guella; Valdir A. Menegatto; Ana P. Peron. Strictly Positive Definite Kernels on a Product of Spheres II. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a102/

[1] Barbosa V. S., Menegatto V. A., “Strictly positive definite kernels on compact two-point homogeneous spaces”, Math. Inequal. Appl., 19 (2016), 743–756, arXiv: 1505.00591 | DOI | MR | Zbl

[2] Barbosa V. S., Menegatto V. A., “Strict positive definiteness on a product of compact two-point homogeneous spaces”, Integral Transform. Spec. Funct. (to appear) , arXiv: 1605.07071 | MR

[3] Beatson R. K., zu Castell W., Dimension hopping and families of strictly positive definite zonal basis functions on spheres, arXiv: 1510.08658

[4] Beatson R. K., zu Castell W., “One-step recurrences for stationary random fields on the sphere”, SIGMA, 12 (2016), 043, 19 pp., arXiv: 1601.07743 | DOI | MR | Zbl

[5] Berg C., Porcu E., “From Schoenberg coefficients to Schoenberg functions”, Constr. Approx. (to appear) , arXiv: 1505.05682 | DOI

[6] Chen D., Menegatto V. A., Sun X., “A necessary and sufficient condition for strictly positive definite functions on spheres”, Proc. Amer. Math. Soc., 131 (2003), 2733–2740 | DOI | MR | Zbl

[7] Emonds J., Führ H., “Strictly positive definite functions on compact abelian groups”, Proc. Amer. Math. Soc., 139 (2011), 1105–1113, arXiv: 1002.3017 | DOI | MR | Zbl

[8] Gangolli R., “Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Brownian motion of several parameters”, Ann. Inst. H. Poincaré Sect. B, 3 (1967), 121–226 | MR | Zbl

[9] Gneiting T., “Nonseparable, stationary covariance functions for space-time data”, J. Amer. Statist. Assoc., 97 (2002), 590–600 | DOI | MR | Zbl

[10] Gneiting T., “Strictly and non-strictly positive definite functions on spheres”, Bernoulli, 19 (2013), 1327–1349, arXiv: 1111.7077 | DOI | MR | Zbl

[11] Guella J. C., Menegatto V. A., “Strictly positive definite kernels on a product of spheres”, J. Math. Anal. Appl., 435 (2016), 286–301, arXiv: 1505.03695 | DOI | MR | Zbl

[12] Guella J. C., Menegatto V. A., Peron A. P., “An extension of a theorem of Schoenberg to products of spheres”, Banach J. Math. Anal., 10 (2016), 671–685, arXiv: 1503.08174 | DOI | MR | Zbl

[13] Guella J. C., Menegatto V. A., Peron A. P., “Strictly positive definite kernels on a product of circles”, Positivity (to appear) , arXiv: 1505.01169 | DOI

[14] Menegatto V. A., Oliveira C. P., Peron A. P., “Strictly positive definite kernels on subsets of the complex plane”, Comput. Math. Appl., 51 (2006), 1233–1250 | DOI | MR | Zbl

[15] Müller C., Analysis of spherical symmetries in Euclidean spaces, Applied Mathematical Sciences, 129, Springer-Verlag, New York, 1998 | DOI | MR

[16] Ron A., Sun X., “Strictly positive definite functions on spheres in Euclidean spaces”, Math. Comp., 65 (1996), 1513–1530 | DOI | MR | Zbl

[17] Schoenberg I. J., “Positive definite functions on spheres”, Duke Math. J., 9 (1942), 96–108 | DOI | MR | Zbl

[18] Shapiro V. L., Fourier series in several variables with applications to partial differential equations, Chapman Hall/CRC Applied Mathematics and Nonlinear Science Series, CRC Press, Boca Raton, FL, 2011 | DOI | MR | Zbl

[19] Sun X., “Strictly positive definite functions on the unit circle”, Math. Comp., 74 (2005), 709–721 | DOI | MR | Zbl

[20] Szeg{ő} G., Orthogonal polynomials, Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, RI, 1975 | MR