Quantum Curve and the First Painlevé Equation
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the topological recursion for the (semi-classical) spectral curve of the first Painlevé equation $P_I$ gives a WKB solution for the isomonodromy problem for $P_I$. In other words, the isomonodromy system is a quantum curve in the sense of [Dumitrescu O., Mulase M., Lett. Math. Phys. 104 (2014), 635–671, arXiv:1310.6022] and [Dumitrescu O., Mulase M., arXiv:1411.1023].
Keywords: quantum curve; first Painlevé equation; topological recursion; isomonodoromic deformation; WKB analysis.
@article{SIGMA_2016_12_a10,
     author = {Kohei Iwaki and Axel Saenz},
     title = {Quantum {Curve} and the {First} {Painlev\'e} {Equation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a10/}
}
TY  - JOUR
AU  - Kohei Iwaki
AU  - Axel Saenz
TI  - Quantum Curve and the First Painlevé Equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a10/
LA  - en
ID  - SIGMA_2016_12_a10
ER  - 
%0 Journal Article
%A Kohei Iwaki
%A Axel Saenz
%T Quantum Curve and the First Painlevé Equation
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a10/
%G en
%F SIGMA_2016_12_a10
Kohei Iwaki; Axel Saenz. Quantum Curve and the First Painlevé Equation. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a10/

[1] Aganagic M., Cheng M. C. N., Dijkgraaf R., Krefl D., Vafa C., “Quantum geometry of refined topological strings”, J. High Energy Phys., 2012:11 (2012), 019, 53 pp., arXiv: 1105.0630 | DOI | MR

[2] Aganagic M., Dijkgraaf R., Klemm A., Mariño M., Vafa C., “Topological strings and integrable hierarchies”, Comm. Math. Phys., 261 (2006), 451–516, arXiv: hep-th/0312085 | DOI | MR | Zbl

[3] Aoki T., Honda N., Umeta Y., “On a construction of general formal solutions for equations of the first Painlevé hierarchy, I”, Adv. Math., 235 (2013), 496–524 | DOI | MR | Zbl

[4] Aoki T., Kawai T., Takei Y., “WKB analysis of Painlevé transcendents with a large parameter. II: Multiple-scale analysis of Painlevé transcendents”, Structure of Solutions of Differential Equations (Katata/Kyoto, 1995), World Sci. Publ., River Edge, NJ, 1996, 1–49 | MR | Zbl

[5] Bergére M., Borot G., Eynard B., “Rational differential dystems, loop equations, and application to the $q$th reductions of KP”, Ann. Henri Poincaré, 16 (2015), 2713–2782, arXiv: 1312.4237 | DOI | MR | Zbl

[6] Bergére M., Eynard B., Determinantal formulae and loop equations, arXiv: 0901.3273

[7] Borot G., Eynard B., Tracy–Widom GUE law and symplectic invariants, arXiv: 1011.1418

[8] Costin O., Asymptotics and Borel summability, Chapman Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 141, CRC Press, Boca Raton, FL, 2009 | MR | Zbl

[9] Di Francesco P., Ginsparg P., Zinn-Justin J., “$2$D gravity and random matrices”, Phys. Rep., 254 (1995), 1–133, arXiv: hep-th/9306153 | DOI | MR

[10] Dijkgraaf R., Fuji H., Manabe M., “The volume conjecture, perturbative knot invariants, and recursion relations for topological strings”, Nuclear Phys. B, 849 (2011), 166–211, arXiv: 1010.4542 | DOI | MR | Zbl

[11] Dumitrescu O., Mulase M., “Quantum curves for Hitchin fibrations and the Eynard–Orantin theory”, Lett. Math. Phys., 104 (2014), 635–671, arXiv: 1310.6022 | DOI | MR | Zbl

[12] Dumitrescu O., Mulase M., Quantization of spectral curves for meromorphic Higgs bundles through topological recursion, arXiv: 1411.1023

[13] Dunin-Barkowski P., Mulase M., Norbury P., Popolitov A., Shadrin S., “Quantum spectral curve for the Gromov–Witten theory of the complex projective line”, J. Reine Angew. Math. (to appear) , arXiv: 1312.5336 | DOI

[14] Eynard B., Topological recursion and quantum curves, Talk given in the workshop “Quantum curves, Hitchin systems, and the Eynard–Orantin theory” (American Institute of Mathematics, Palo Alto, September 2014)

[15] Eynard B., Counting surfaces, Progress in Mathematical Physics, 70, Birkhäuser, Basel, 2016 | DOI

[16] Eynard B., Orantin N., “Invariants of algebraic curves and topological expansion”, Commun. Number Theory Phys., 1 (2007), 347–452, arXiv: math-ph/0702045 | DOI | MR | Zbl

[17] Fokas A. S., Its A. R., Kapaev A. A., Novokshenov V. Yu., Painlevé transcendents. The Riemann–Hilbert approach, Mathematical Surveys and Monographs, 128, Amer. Math. Soc., Providence, RI, 2006 | DOI | MR

[18] Gukov S., Sułkowski P., “A-polynomial, {B}-model, and quantization”, J. High Energy Phys., 2012:2 (2012), 070, 57 pp., arXiv: 1108.0002 | DOI | MR | Zbl

[19] Iwaki K., Marchal O., Painlevé 2 equation with arbitrary monodromy parameter, topological recursion and determinantal formulas, arXiv: 1411.0875

[20] Jimbo M., Miwa T., Ueno K., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I: General theory and $\tau $-function”, Phys. D, 2 (1981), 306–352 | DOI | MR | Zbl

[21] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, II”, Phys. D, 2 (1981), 407–448 | DOI | MR | Zbl

[22] Joshi N., Kitaev A. V., “On Boutroux's tritronquée solutions of the first Painlevé equation”, Stud. Appl. Math., 107 (2001), 253–291 | DOI | MR | Zbl

[23] Kamimoto S., Koike T., “On the Borel summability of 0-parameter solutions of nonlinear ordinary differential equations”, Recent Development of Micro-Local Analysis for the Theory of Asymptotic Analysis, RIMS Kôkyûroku Bessatsu, B40, RIMS, Kyoto, 2013, 191–212 | MR | Zbl

[24] Kapaev A. A., “Asymptotic behavior of the solutions of the Painlevé equation of the first kind”, Differential Equations, 24 (1988), 1107–1115 | MR | Zbl

[25] Kawai T., Takei Y., “WKB analysis of Painlevé transcendents with a large parameter, I”, Adv. Math., 118 (1996), 1–33 | DOI | MR | Zbl

[26] Kawai T., Takei Y., Algebraic analysis of singular perturbation theory, Translations of Mathematical Monographs, 227, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl

[27] Kawakami H., Nakamura A., Sakai H., Degeneration scheme of 4-dimensional Painlevé-type equations, arXiv: 1209.3836

[28] Kontsevich M., “Intersection theory on the moduli space of curves and the matrix Airy function”, Comm. Math. Phys., 147 (1992), 1–23 | DOI | MR | Zbl

[29] Mulase M., Sułkowski P., Spectral curves and the Schrödinger equations for the Eynard–Orantin recursion, arXiv: 1210.3006

[30] Nakamura A., Autonomous limit of 4-dimensional Painlevé-type equations and degeneration of curves of genus two, arXiv: 1505.00885

[31] Norbury P., Quantum curves and topological recursion, arXiv: 1502.04394

[32] Okamoto K., “Polynomial Hamiltonians associated with Painlevé equations, I”, Proc. Japan Acad. Ser. A Math. Sci., 56 (1980), 264–268 | DOI | MR | Zbl

[33] Olshanetsky M. A., “Painlevé type equations and Hitchin systems”, Integrability: the Seiberg–Witten and Whitham Equations (Edinburgh, 1998), Gordon and Breach, Amsterdam, 2000, 153–174, arXiv: math-ph/9901019 | MR | Zbl

[34] Painlevé P., “Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme”, Acta Math., 25 (1902), 1–85 | DOI | MR

[35] Takasaki K., “Spectral curves and Whitham equations in isomonodromic problems of Schlesinger type”, Asian J. Math., 2 (1998), 1049–1078, arXiv: solv-int/9704004 | DOI | MR | Zbl

[36] Takei Y., “An explicit description of the connection formula for the first Painlevé equation”, Toward the Exact WKB Analysis of Differential Equations, Linear or Non-Linear (Kyoto, 1998), Kyoto University Press, Kyoto, 2000, 271–296 | MR | Zbl