Mots-clés : Schröder
@article{SIGMA_2016_12_a1,
author = {Anatol N. Kirillov},
title = {On {Some} {Quadratic} {Algebras} {I} $\frac{1}{2}$: {Combinatorics} of {Dunkl} and {Gaudin} {Elements,} {Schubert,} {Grothendieck,} {Fuss{\textendash}Catalan,} {Universal} {Tutte} and {Reduced} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a1/}
}
TY - JOUR
AU - Anatol N. Kirillov
TI - On Some Quadratic Algebras I $\frac{1}{2}$: Combinatorics of Dunkl and Gaudin Elements, Schubert, Grothendieck, Fuss–Catalan, Universal Tutte and Reduced Polynomials
JO - Symmetry, integrability and geometry: methods and applications
PY - 2016
VL - 12
UR - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a1/
LA - en
ID - SIGMA_2016_12_a1
ER -
%0 Journal Article
%A Anatol N. Kirillov
%T On Some Quadratic Algebras I $\frac{1}{2}$: Combinatorics of Dunkl and Gaudin Elements, Schubert, Grothendieck, Fuss–Catalan, Universal Tutte and Reduced Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a1/
%G en
%F SIGMA_2016_12_a1
Anatol N. Kirillov. On Some Quadratic Algebras I $\frac{1}{2}$: Combinatorics of Dunkl and Gaudin Elements, Schubert, Grothendieck, Fuss–Catalan, Universal Tutte and Reduced Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a1/
[1] Aguiar M., “On the associative analog of Lie bialgebras”, J. Algebra, 244 (2001), 492–532 | DOI | MR | Zbl
[2] Albenque M., Nadeau P., “Growth function for a class of monoids”, 21st International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC 2009, Discrete Math. Theor. Comput. Sci. Proc., AK, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2009, 25–38 | MR
[3] Arnold V. I., “The cohomology ring of the colored braid group”, Math. Notes, 5 (1969), 138–140 | DOI | MR | Zbl
[4] Astashkevich A., Sadov V., “Quantum cohomology of partial flag manifolds $F_{n_1\cdots n_k}$”, Comm. Math. Phys., 170 (1995), 503–528, arXiv: hep-th/9401103 | DOI | MR | Zbl
[5] Bardakov V. G., “The virtual and universal braids”, Fund. Math., 184 (2004), 1–18, arXiv: math.GR/0407400 | DOI | MR | Zbl
[6] Bar-Natan D., “Vassiliev and quantum invariants of braids”, The Interface of Knots and Physics (San Francisco, CA, 1995), Proc. Sympos. Appl. Math., 51, Amer. Math. Soc., Providence, RI, 1996, 129–144, arXiv: q-alg/9607001 | DOI | MR | Zbl
[7] Bartholi L., Enriquez B., Etingof P., Rains E., “Groups and algebras corresponding to the Yang–Baxter equations”, J. Algebra, 305 (2006), 742–764, arXiv: math.RA/0509661 | DOI | MR
[8] Bazlov Yu., “Nichols–Woronowicz algebra model for Schubert calculus on Coxeter groups”, J. Algebra, 297 (2006), 372–399, arXiv: math.QA/0409206 | DOI | MR | Zbl
[9] Belavin A. A., Drinfeld V. G., Triangle equations and simple Lie algebras, v. 1, Classic Reviews in Mathematics and Mathematical Physics, Harwood Academic Publishers, Amsterdam, 1998 | MR | Zbl
[10] Benson B., Chakrabarty D., Tetali P., “$G$-parking functions, acyclic orientations and spanning trees”, Discrete Math., 310 (2010), 1340–1353, arXiv: 0801.1114 | DOI | MR | Zbl
[11] Berget A., “Products of linear forms and Tutte polynomials”, European J. Combin., 31 (2010), 1924–1935, arXiv: 0906.4774 | DOI | MR | Zbl
[12] Bershtein M., Dotsenko V., Khoroshkin A., “Quadratic algebras related to the bi-Hamiltonian operad”, Int. Math. Res. Not., 2007, 2007, rnm122, 30 pp., arXiv: math.RA/0607289 | DOI | MR | Zbl
[13] Billey S. C., Jockusch W., Stanley R. P., “Some combinatorial properties of Schubert polynomials”, J. Algebraic Combin., 2 (1993), 345–374 | DOI | MR | Zbl
[14] Birman J. S., Brendle T. E.,, “Braids: a survey”, Handbook of Knot Theory, Elsevier B. V., Amsterdam, 2005, 19–103, arXiv: math.GT/0409205 | DOI | MR | Zbl
[15] Birman J. S., Ko K. H., Lee S. J., “A new approach to the word and conjugacy problem in the braid groups”, Adv. Math., 139 (1998), 322–353, arXiv: math.GT/9712211 | DOI | MR | Zbl
[16] Blasiak J., Liu R. I., Mészáros K., Subalgebras of the Fomin–Kirillov algebra, arXiv: 1310.4112
[17] Bourbaki N., Lie groups and Lie algebras, Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002 | MR | Zbl
[18] Bressoud D. M., Proofs and confirmations. The story of the alternating sign matrix conjecture, MAA Spectrum, Mathematical Association of America, Washington, DC; Cambridge University Press, Cambridge, 1999 | MR
[19] Brualdi R., Kirkland S., “Aztec diamonds and digraphs, and Hankel determinants of Schröder numbers”, J. Combin. Theory Ser. B, 94 (2005), 334–351 | DOI | MR | Zbl
[20] Chan C. S., Robbins D. P., “On the volume of the polytope of doubly stochastic matrices”, Experiment. Math., 8 (1999), 291–300, arXiv: math.CO/9806076 | DOI | MR | Zbl
[21] Chan C. S., Robbins D. P., Yuen D. S., “On the volume of a certain polytope”, Experiment. Math., 9 (2000), 91–99, arXiv: math.CO/9810154 | DOI | MR | Zbl
[22] Chaumont L., Liu R., Coding multitype forests: application to the law of the total progeny of branching forests and to enumeration, arXiv: 1302.0195 | MR
[23] Chen W. Y. C., “A general bijective algorithm for trees”, Proc. Nat. Acad. Sci. USA, 87 (1990), 9635–9639 | DOI | MR | Zbl
[24] Cherednik I., Double affine Hecke algebras, London Mathematical Society Lecture Note Series, 319, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl
[25] Chervov A., Falqui G., “Manin matrices and Talalaev's formula”, J. Phys. A: Math. Theor., 41 (2008), 194006, 28 pp., arXiv: 0711.2236 | DOI | MR | Zbl
[26] Clark E., Ehrenborg R., “Explicit expressions for the extremal excedance set statistics”, European J. Combin., 31 (2010), 270–279 | DOI | MR | Zbl
[27] Cohen F. R., Pakianathan J., Vershinin V. V., Wu J., “Basis-conjugating automorphisms of a free group and associated Lie algebras”, Groups, Homotopy and Configuration Spaces, Geom. Topol. Monogr., 13,, Geom. Topol. Publ., Coventry, 2008, 147–168, arXiv: math.GR/0610946 | DOI | MR | Zbl
[28] Cordovil R., “A commutative algebra for oriented matroids”, Discrete Comput. Geom., 27 (2002), 73–84 | DOI | MR | Zbl
[29] Deift P., Li L. C., Nanda T., Tomei C., “The Toda flow on a generic orbit is integrable”, Comm. Pure Appl. Math., 39 (1986), 183–232 | DOI | MR | Zbl
[30] Deligne P., “Les immeubles des groupes de tresses généralisés”, Invent. Math., 17 (1972), 273–302 | DOI | MR | Zbl
[31] Deutsch E., Sagan B. E., “Congruences for Catalan and Motzkin numbers and related sequences”, J. Number Theory, 117 (2006), 191–215, arXiv: math.CO/0407326 | DOI | MR | Zbl
[32] Di Francesco P., “A refined Razumov–Stroganov conjecture”, J. Stat. Mech. Theory Exp., 2004 (2004), P08009, 16 pp., arXiv: cond-mat/0407477 | DOI | MR | Zbl
[33] Di Francesco P., Zinn-Justin P., “The quantum Knizhnik–Zamolodchikov equation, generalized Razumov–Stroganov sum rules and extended Joseph polynomials”, J. Phys. A: Math. Gen., 38 (2005), L815–L822, arXiv: math-ph/0508059 | DOI | MR | Zbl
[34] Di Francesco P., Zinn-Justin P., “Inhomogeneous model of crossing loops and multidegrees of some algebraic varieties”, Comm. Math. Phys., 262 (2006), 459–487, arXiv: math-ph/0412031 | DOI | MR | Zbl
[35] Dunkl C. F., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl
[36] Dunkl C. F., “Harmonic polynomials and peak sets of reflection groups”, Geom. Dedicata, 32 (1989), 157–171 | DOI | MR | Zbl
[37] E{ğ}ecio{ğ}lu Ö., Redmond T., Ryavec C., “From a polynomial Riemann hypothesis to alternating sign matrices”, Electron. J. Combin., 8:1 (2001), 36, 51 pp. | MR
[38] Erdélyi A., Etherington I. M. H., “Some problems of non-associative combinatorics, 2”, Edinburgh Math. Notes, 32 (1940), 7–14 | DOI
[39] Escobar L., Mészáros K., Subword complexes via triangulations of root polytopes, arXiv: 1502.03997
[40] Felder G., Pasquier V., “A simple construction of elliptic $R$-matrices”, Lett. Math. Phys., 32 (1994), 167–171, arXiv: hep-th/9402011 | DOI | MR | Zbl
[41] Fomin S., Gelfand S., Postnikov A., “Quantum Schubert polynomials”, J. Amer. Math. Soc., 10 (1997), 565–596 | DOI | MR | Zbl
[42] Fomin S., Kirillov A. N., Yang–Baxter equation, symmetric functions and Grothendieck polynomials, arXiv: hep-th/9306005
[43] Fomin S., Kirillov A. N., “The Yang–Baxter equation, symmetric functions, and Schubert polynomials”, Discrete Math., 153 (1996), 123–143 | DOI | MR | Zbl
[44] Fomin S., Kirillov A. N., “Reduced words and plane partitions”, J. Algebraic Combin., 6 (1997), 311–319 | DOI | MR | Zbl
[45] Fomin S., Kirillov A. N., “Quadratic algebras, Dunkl elements, and Schubert calculus”, Advances in Geometry, Progr. Math., 172, Birkhäuser Boston, Boston, MA, 1999, 147–182 | DOI | MR | Zbl
[46] Fomin S., Procesi C., “Fibered quadratic Hopf algebras related to Schubert calculus”, J. Algebra, 230 (2000), 174–183 | DOI | MR | Zbl
[47] Fulton W., “Universal Schubert polynomials”, Duke Math. J., 96 (1999), 575–594, arXiv: alg-geom/9702012 | DOI | MR | Zbl
[48] Ganter N., Ram A., “Generalized Schubert calculus”, J. Ramanujan Math. Soc., 28A (2013), 149–190, arXiv: 1212.5742 | MR | Zbl
[49] Gel'fand I. M., Rybnikov G. L., “Algebraic and topological invariants of oriented matroids”, Soviet Math. Dokl., 40 (1990), 148–152 | MR | Zbl
[50] Gessel I. M., “A combinatorial proof of the multivariable Lagrange inversion formula”, J. Combin. Theory Ser. A, 45 (1987), 178–195 | DOI | MR | Zbl
[51] Gessel I. M., Sagan B. E., “The Tutte polynomial of a graph, depth-first search, and simplicial complex partitions”, Electron. J. Combin., 3:2 (1996), 9, 36 pp. | MR
[52] Ginzburg V., Kapranov M., Vasserot E., Elliptic algebras and equivariant elliptic cohomology, arXiv: q-alg/9505012
[53] Givental A., “Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture”, Topics in singularity theory, Amer. Math. Soc. Transl. Ser. 2, 180, Amer. Math. Soc., Providence, RI, 1997, 103–115, arXiv: alg-geom/9612001 | MR | Zbl
[54] Gorbounov V., Rimányi R., Tarasov V., Varchenko A., “Quantum cohomology of the cotangent bundle of a flag variety as a Yangian Bethe algebra”, J. Geom. Phys., 74 (2013), 56–86, arXiv: 1204.5138 | DOI | MR | Zbl
[55] Haiman M. D., “Conjectures on the quotient ring by diagonal invariants”, J. Algebraic Combin., 3 (1994), 17–76 | DOI | MR | Zbl
[56] Hikami K., Wadati M., “Topics in quantum integrable systems”, J. Math. Phys., 44 (2003), 3569–3594 | DOI | MR | Zbl
[57] Hivert F., Novelli J.-C., Thibon J.-Y., “Commutative combinatorial Hopf algebras”, J. Algebraic Combin., 28 (2008), 65–95, arXiv: math.CO/0605262 | DOI | MR | Zbl
[58] Hurtado F., Noy M., “Graph of triangulations of a convex polygon and tree of triangulations”, Comput. Geom., 13 (1999), 179–188 | DOI | MR | Zbl
[59] Isaev A. P., Kirillov A. N., “Bethe subalgebras in Hecke algebra and Gaudin models”, Lett. Math. Phys., 104 (2014), 179–193, arXiv: 1302.6495 | DOI | MR | Zbl
[60] Isaev A. P., Kirillov A. N., Tarasov V. O., Bethe subalgebras in affine Birman–Murakami–Wenzl algebras and flat connections for $q$-KZ equations, arXiv: 1510.05374
[61] Jensen C., McCammond J., Meier J., “The integral cohomology of the group of loops”, Geom. Topol., 10 (2006), 759–784, arXiv: 0903.0140 | DOI | MR | Zbl
[62] Jucys A.-A. A., “Symmetric polynomials and the center of the symmetric group ring”, Rep. Math. Phys., 5 (1974), 107–112 | DOI | MR | Zbl
[63] Kajihara Y., Noumi M., “Multiple elliptic hypergeometric series. An approach from the Cauchy determinant”, Indag. Math. (N.S.), 14 (2003), 395–421, arXiv: math.CA/0306219 | DOI | MR | Zbl
[64] Kaneko M., “Poly-Bernoulli numbers”, J. Théor. Nombres Bordeaux, 9 (1997), 221–228 | DOI | MR | Zbl
[65] Kawahara Y., “On matroids and Orlik–Solomon algebras”, Ann. Comb., 8 (2004), 63–80 | DOI | MR | Zbl
[66] Kirillov A. N., “On some quadratic algebras”, L. D. Faddeev's Seminar on Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 201, Amer. Math. Soc., Providence, RI, 2000, 91–113, arXiv: q-alg/9705003 | MR | Zbl
[67] Kirillov A. N., “On some quadratic algebras: Jucys–Murphy and Dunkl elements”, Calogero–Moser–Sutherland Models (Montréal, QC, 1997), CRM Ser. Math. Phys., Springer, New York, 2000, 231–248 | DOI | MR
[68] Kirillov A. N., “$t$-deformations of quantum Schubert polynomials”, Funkcial. Ekvac., 43 (2000), 57–69, arXiv: math.QA/9802001 | MR | Zbl
[69] Kirillov A. N., “Ubiquity of Kostka polynomials”, Physics and Combinatorics (Nagoya, 1999), World Sci. Publ., River Edge, NJ, 2001, 85–200, arXiv: math.QA/9912094 | DOI | MR | Zbl
[70] Kirillov A. N., “On some algebraic and combinatorial properties of Dunkl elements”, Internat. J. Modern Phys. B, 26 (2012), 1243012, 28 pp. | DOI | MR | Zbl
[71] Kirillov A. N., Notes on Schubert, Grothendieck and Key polynomials, arXiv: 1501.07337
[72] Kirillov A. N., On some quadratic algebras, II, unpublished
[73] Kirillov A. N., Maeno T., “Noncommutative algebras related with Schubert calculus on Coxeter groups”, European J. Combin., 25 (2004), 1301–1325, arXiv: math.CO/0310068 | DOI | MR | Zbl
[74] Kirillov A. N., Maeno T., “Braided differential structure on Weyl groups, quadratic algebras, and elliptic functions”, Int. Math. Res. Not., 2008, no. 14, 2008, rnn046, 23 pp., arXiv: 0709.4599 | DOI | MR | Zbl
[75] Kirillov A. N., Maeno T., “Extended quadratic algebra and a model of the equivariant cohomology ring of flag varieties”, St. Petersburg Math. J., 22 (2011), 447–462, arXiv: 0712.2580 | DOI | MR | Zbl
[76] Kirillov A. N., Maeno T., A note on quantum $K$-theory of flag varieties, in preparation
[77] Knutson A., Miller E., “Gröbner geometry of Schubert polynomials”, Ann. of Math., 161 (2005), 1245–1318, arXiv: math.AG/0110058 | DOI | MR | Zbl
[78] Knutson A., Miller E., Yong A., “Gröbner geometry of vertex decompositions and of flagged tableaux”, J. Reine Angew. Math., 630 (2009), 1–31, arXiv: math.AG/0502144 | DOI | MR | Zbl
[79] Koornwinder T. H., “On the equivalence of two fundamental theta identities”, Anal. Appl. (Singap.), 12 (2014), 711–725, arXiv: 1401.5368 | DOI | MR | Zbl
[80] Kostant B., “The solution to a generalized Toda lattice and representation theory”, Adv. Math., 34 (1979), 195–338 | DOI | MR | Zbl
[81] Krattenthaler C., “Determinants of (generalised) Catalan numbers”, J. Statist. Plann. Inference, 140 (2010), 2260–2270, arXiv: 0709.3044 | DOI | MR | Zbl
[82] Kreweras G., “Une famille de polynômes ayant plusieurs propriétés énumeratives”, Period. Math. Hungar., 11 (1980), 309–320 | DOI | MR | Zbl
[83] Kuperberg G., “Symmetry classes of alternating-sign matrices under one roof”, Ann. of Math., 156 (2002), 835–866, arXiv: math.CO/0008184 | DOI | MR
[84] Lascoux A., “Anneau de Grothendieck de la variété de drapeaux”, The Grothendieck Festschrift, v. III, Progr. Math., 88, Birkhäuser Boston, Boston, MA, 1990, 1–34 | DOI | MR | Zbl
[85] Lascoux A., Leclerc B., Thibon J.-Y., “Flag varieties and the Yang–Baxter equation”, Lett. Math. Phys., 40 (1997), 75–90, arXiv: q-alg/9607015 | DOI | MR | Zbl
[86] Lascoux A., Schützenberger M. P., “Symmetry and flag manifolds”, Invariant Theory (Montecatini, 1982), Lecture Notes in Math., 996, Springer, Berlin, 1983, 118–144 | DOI | MR
[87] Lascoux A., Schützenberger M. P., “Symmetrization operators in polynomial rings”, Funct. Anal. Appl., 21 (1987), 324–326 | DOI | MR | Zbl
[88] Lazard M., “Sur les groupes de Lie formels à un paramètre”, Bull. Soc. Math. France, 83 (1955), 251–274 | MR | Zbl
[89] Liu R. I., On the commutative quotient of Fomin–Kirillov algebras, arXiv: 1409.4872
[90] Loday J.-L., “Inversion of integral series enumerating planar trees”, Sém. Lothar. Combin., 53 (2005), B53d, 16 pp., arXiv: math.CO/0403316 | MR | Zbl
[91] Loday J.-L., The multiple facets of the associahedron, http://www-irma.u-strasbg.fr/\allowbreakl̃oday/PAPERS/MultFAsENG2.pdf
[92] Macdonald I. G., Notes on {S}chubert polynomials, Publications du LaCIM, 6, Université du Québec à Montréal, 1991 | MR
[93] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Oxford Science Publications, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR
[94] Manin Yu. I., “Some remarks on Koszul algebras and quantum groups”, Ann. Inst. Fourier (Grenoble), 37 (1987), 191–205 | DOI | MR | Zbl
[95] Manin Yu. I., Quantum groups and noncommutative geometry, Université de Montréal, Centre de Recherches Mathématiques, Montreal, QC, 1988 | MR
[96] Mathieu O., “The symplectic operad”, Functional Analysis on the Eve of the 21st Century (New Brunswick, NJ, 1993), v. 1, Progr. Math., 131, Birkhäuser Boston, Boston, MA, 1995, 223–243 | DOI | MR | Zbl
[97] Matsumoto S., Novak J., “Unitary matrix integrals, primitive factorizations, and Jucys–Murphy elements”, 22nd International Conference on Formal Power Series and Algebraic {C}ombinatorics, FPSAC 2010, Discrete Math. Theor. Comput. Sci. Proc., AN, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2010, 403–411, arXiv: 1005.0151 | MR
[98] Merino C., Ramírez-Ibáñez M., Rodríguez-Sánchez G., “The Tutte polynomial of some matroids”, Int. J. Comb., 2012 (2012), 430859, 40 pp., arXiv: 1203.0090 | DOI | MR | Zbl
[99] Mészáros K., “Root polytopes, triangulations, and the subdivision algebra, I”, Trans. Amer. Math. Soc., 363 (2011), 4359–4382, arXiv: 0904.2194 | DOI | MR
[100] Mészáros K., “Root polytopes, triangulations, and the subdivision algebra, II”, Trans. Amer. Math. Soc., 363 (2011), 6111–6141, arXiv: 0904.3339 | DOI | MR
[101] Mészáros K., “Product formula for volumes of flow polytopes”, Proc. Amer. Math. Soc., 143 (2015), 937–954, arXiv: 1111.5634 | DOI | MR
[102] Mészáros K., $h$-polynomials via reduced forms, arXiv: 1407.2685
[103] Mészáros K., Morales A. H., “Flow polytopes of signed graphs and the Kostant partition function”, Int. Math. Res. Not., 2015 (2015), 830–871, arXiv: 1208.0140 | DOI | MR
[104] Mészáros K., Panova G., Postnikov A., “Schur times Schubert via the Fomin–Kirillov algebra”, Electron. J. Combin., 21 (2014), 1.39, 22 pp., arXiv: 1210.1295 | MR
[105] Miller E., Sturmfels B., Combinatorial commutative algebra, Graduate Texts in Mathematics, 227, Springer-Verlag, New York, 2005 | DOI | MR
[106] Molev A., Yangians and classical Lie algebras, Mathematical Surveys and Monographs, 143, Amer. Math. Soc., Providence, RI, 2007 | DOI | MR | Zbl
[107] Motegi K., Sakai K., “Vertex models, TASEP and Grothendieck polynomials”, J. Phys. A: Math. Theor., 46 (2013), 355201, 26 pp., arXiv: 1305.3030 | DOI | MR | Zbl
[108] Mukhin E., Tarasov V., Varchenko A., “Bethe subalgebras of the group algebra of the symmetric group”, Transform. Groups, 18 (2013), 767–801, arXiv: 1004.4248 | DOI | MR | Zbl
[109] Mutafyan G. S., Feigin B. L., “Characters of representations of the quantum toroidal algebra $\widehat{\widehat{\mathfrak{gl}}}_1$: plane partitions with “stands””, Funct. Anal. Appl., 48 (2014), 36–48 | DOI | MR | Zbl
[110] Novelli J.-C., Thibon J.-Y., Hopf algebras of $m$-permutations, $(m+1)$-ary trees, and $m$-parking functions, arXiv: 1403.5962
[111] Okada S., “Enumeration of symmetry classes of alternating sign matrices and characters of classical groups”, J. Algebraic Combin., 23 (2006), 43–69, arXiv: math.CO/0408234 | DOI | MR | Zbl
[112] Orellana R., Ram A., “Affine braids, Markov traces and the category ${\mathcal O}$”, Algebraic Groups and Homogeneous Spaces, Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2007, 423–473, arXiv: math.RT/0401317 | MR | Zbl
[113] Orlik P., Terao H., Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, 300, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl
[114] Orlik P., Terao H., “Commutative algebras for arrangements”, Nagoya Math. J., 134 (1994), 65–73 | MR | Zbl
[115] Polishchuk A., “Classical Yang–Baxter equation and the $A_\infty$-constraint”, Adv. Math., 168 (2002), 56–95, arXiv: math.AG/0008156 | DOI | MR | Zbl
[116] Polishchuk A., Positselski L., Quadratic algebras, University Lecture Series, 37, Amer. Math. Soc., Providence, RI, 2005 | DOI | MR | Zbl
[117] Postnikov A., “On a quantum version of Pieri's formula”, Advances in geometry, Progr. Math., 172, Birkhäuser Boston, Boston, MA, 1999, 371–383 | DOI | MR | Zbl
[118] Postnikov A., Shapiro B., Shapiro M., “Algebras of curvature forms on homogeneous manifolds”, Differential Topology, Infinite-Dimensional Lie algebras, and Applications, Amer. Math. Soc. Transl. Ser. 2, 194, Amer. Math. Soc., Providence, RI, 1999, 227–235, arXiv: math.AG/9901075 | MR | Zbl
[119] Postnikov A., Stanley R. P., “Deformations of Coxeter hyperplane arrangements”, J. Combin. Theory Ser. A, 91 (2000), 544–597, arXiv: math.CO/9712213 | DOI | MR | Zbl
[120] Proctor R. A., “Bruhat lattices, plane partition generating functions, and minuscule representations”, European J. Combin., 5 (1984), 331–350 | DOI | MR | Zbl
[121] Proctor R. A., “New symmetric plane partition identities from invariant theory work of De Concini and Procesi”, European J. Combin., 11 (1990), 289–300 | DOI | MR | Zbl
[122] Proctor R. A., “Product evaluations of Lefschetz determinants for Grassmannians and of determinants of multinomial coefficients”, J. Combin. Theory Ser. A, 54 (1990), 235–247 | DOI | MR | Zbl
[123] Pyatov P., “Raise and peel models of fluctuating interfaces and combinatorics of Pascal's hexagon”, J. Stat. Mech. Theory Exp., 2004 (2004), P09003, 30 pp., arXiv: math-ph/0406025 | DOI | MR | Zbl
[124] Ryom-Hansen S., “On the representation theory of an algebra of braids and ties”, J. Algebraic Combin., 33 (2011), 57–79, arXiv: 0801.3633 | DOI | MR | Zbl
[125] Saito K., “Growth function of Artin monoids”, Proc. Japan Acad. Ser. A Math. Sci., 85:7 (2009), 84–88 | DOI | MR | Zbl
[126] Schenck H., Tohǎneanu {Ş}. O., “The Orlik–Terao algebra and 2-formality”, Math. Res. Lett., 16 (2009), 171–182, arXiv: 0901.0253 | DOI | MR | Zbl
[127] Schuetz A., Whieldon G., Polygonal dissections and reversions of series, arXiv: 1401.7194
[128] Serrano L., Stump C., “Generalized triangulations, pipe dreams, and simplicial spheres”, 23rd International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC 2011, Discrete Math. Theor. Comput. Sci. Proc., AO, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2011, 885–896 | MR
[129] Shapiro B., Shapiro M., “On ring generated by Chern $2$-forms on ${\rm SL}_n/B$”, C. R. Acad. Sci. Paris Sér. I Math., 326 (1998), 75–80 | DOI | MR | Zbl
[130] Shibukawa Y., Ueno K., “Completely $Z$ symmetric $R$ matrix”, Lett. Math. Phys., 25 (1992), 239–248 | DOI | MR | Zbl
[131] Sloan N., The on-line encyclopedia of integer sequences, https://oeis.org/
[132] Stanley R. P., “Acyclic flow polytopes and Kostant's partition function”, Conference transparencies (2000) http://www-math.mit.edu/r̃stan/transparencies/kostant.ps
[133] Stanley R. P., Catalan addendum, version of April 30, 2011, http://www-math.mit.edu/\allowbreakr̃stan/ec/catadd.pdf
[134] Stanley R. P., Enumerative combinatorics, v. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl
[135] Stump C., “A new perspective on $k$-triangulations”, J. Combin. Theory Ser. A, 118 (2011), 1794–1800, arXiv: 1009.4101 | DOI | MR | Zbl
[136] Sulanke R. A., “Counting lattice paths by Narayana polynomials”, Electron. J. Combin., 7 (2000), 40, 9 pp. http://www.combinatorics.org/Volume_7/Abstracts/v7i1r40.html | MR
[137] Tamvakis H., “Arithmetic intersection theory on flag varieties”, Math. Ann., 314 (1999), 641–665, arXiv: alg-geom/9611006 | DOI | MR | Zbl
[138] Uglov D., “Finite-difference representations of the degenerate affine Hecke algebra”, Phys. Lett. A, 199 (1995), 353–359, arXiv: hep-th/9409155 | DOI | MR | Zbl
[139] Wachs M. L., “Flagged Schur functions, Schubert polynomials, and symmetrizing operators”, J. Combin. Theory Ser. A, 40 (1985), 276–289 | DOI | MR | Zbl
[140] Welsh D., “The Tutte polynomial”, Random Structures Algorithms, 15 (1999), 210–228 | 3.0.CO;2-R class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[141] Whittaker E. T., Watson G. N., A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996 | DOI | MR | Zbl
[142] Woo A., Catalan numbers and {S}chubert polynomials for $w=1(n+1)\cdots 2$, arXiv: math.CO/0407160