@article{SIGMA_2015_11_a99,
author = {Boris Feigin and Ayumu Hoshino and Masatoshi Noumi and Jun Shibahara and Jun'ichi Shiraishi},
title = {Tableau {Formulas} for {One-Row} {Macdonald} {Polynomials} of {Types} $C_n$ and $D_n$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a99/}
}
TY - JOUR AU - Boris Feigin AU - Ayumu Hoshino AU - Masatoshi Noumi AU - Jun Shibahara AU - Jun'ichi Shiraishi TI - Tableau Formulas for One-Row Macdonald Polynomials of Types $C_n$ and $D_n$ JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a99/ LA - en ID - SIGMA_2015_11_a99 ER -
%0 Journal Article %A Boris Feigin %A Ayumu Hoshino %A Masatoshi Noumi %A Jun Shibahara %A Jun'ichi Shiraishi %T Tableau Formulas for One-Row Macdonald Polynomials of Types $C_n$ and $D_n$ %J Symmetry, integrability and geometry: methods and applications %D 2015 %V 11 %U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a99/ %G en %F SIGMA_2015_11_a99
Boris Feigin; Ayumu Hoshino; Masatoshi Noumi; Jun Shibahara; Jun'ichi Shiraishi. Tableau Formulas for One-Row Macdonald Polynomials of Types $C_n$ and $D_n$. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a99/
[1] Feigin B., Hoshino A., Shibahara J., Shiraishi J., Yanagida S., “Kernel function and quantum algebras”, Representation Theory and Combinatorics, RIMS Kôkyûroku, 1689, Res. Inst. Math. Sci. (RIMS), Kyoto, 2010, 133–152, arXiv: 1002.2485
[2] Frenkel E., Reshetikhin N., “Deformations of ${\mathcal W}$-algebras associated to simple Lie algebras”, Comm. Math. Phys., 197 (1998), 1–32, arXiv: q-alg/9708006 | MR | Zbl
[3] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 35, Cambridge University Press, Cambridge, 1990 | MR | Zbl
[4] Hoshino A., Noumi M., Shiraishi J., Some transformation formulas associated with Askey–Wilson polynomials and Lassalle's formulas for Macdonald–Koornwinder polynomials, arXiv: 1406.1628
[5] Kashiwara M., Nakashima T., “Crystal graphs for representations of the $q$-analogue of classical Lie algebras”, J. Algebra, 165 (1994), 295–345 | DOI | MR | Zbl
[6] Koornwinder T. H., “Askey–Wilson polynomials for root systems of type $BC$”, Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemp. Math., 138, Amer. Math. Soc., Providence, RI, 1992, 189–204 | DOI | MR | Zbl
[7] Langer R., Schlosser M. J., Warnaar S. O., “Theta functions, elliptic hypergeometric series, and Kawanaka's Macdonald polynomial conjecture”, SIGMA, 5 (2009), 055, 20 pp., arXiv: 0905.4033 | DOI | MR | Zbl
[8] Lassalle M., “Some conjectures for Macdonald polynomials of type $B$, $C$, $D$”, Sém. Lothar. Combin., 52 (2005), B52h, 24 pp., arXiv: math.CO/0503149 | MR
[9] Lenart C., “Haglund–Haiman–Loehr type formulas for Hall–Littlewood polynomials of type $B$ and $C$”, Algebra Number Theory, 4 (2010), 887–917, arXiv: 0904.2407 | DOI | MR | Zbl
[10] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Oxford Science Publications, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR
[11] Macdonald I. G., “Orthogonal polynomials associated with root systems”, Sém. Lothar. Combin., 45 (2000), B45a, 40 pp., arXiv: math.QA/0011046 | MR | Zbl
[12] Noumi M., Shiraishi J., A direct approach to the bispectral problem for the Ruijsenaars–Macdonald $q$-difference operators, arXiv: 1206.5364
[13] Ram A., Yip M., “A combinatorial formula for Macdonald polynomials”, Adv. Math., 226 (2011), 309–331, arXiv: 0803.1146 | DOI | MR | Zbl
[14] van Diejen J. F., Emsiz E., “Pieri formulas for Macdonald's spherical functions and polynomials”, Math. Z., 269 (2011), 281–292, arXiv: 1009.4482 | DOI | MR | Zbl