Tableau Formulas for One-Row Macdonald Polynomials of Types $C_n$ and $D_n$
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present explicit formulas for the Macdonald polynomials of types $C_n$ and $D_n$ in the one-row case. In view of the combinatorial structure, we call them “tableau formulas”. For the construction of the tableau formulas, we apply some transformation formulas for the basic hypergeometric series involving very well-poised balanced ${}_{12}W_{11}$ series. We remark that the correlation functions of the deformed $\mathcal{W}$ algebra generators automatically give rise to the tableau formulas when we principally specialize the coordinate variables.
Keywords: Macdonald polynomials; deformed $\mathcal{W}$ algebras.
@article{SIGMA_2015_11_a99,
     author = {Boris Feigin and Ayumu Hoshino and Masatoshi Noumi and Jun Shibahara and Jun'ichi Shiraishi},
     title = {Tableau {Formulas} for {One-Row} {Macdonald} {Polynomials} of {Types} $C_n$ and $D_n$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a99/}
}
TY  - JOUR
AU  - Boris Feigin
AU  - Ayumu Hoshino
AU  - Masatoshi Noumi
AU  - Jun Shibahara
AU  - Jun'ichi Shiraishi
TI  - Tableau Formulas for One-Row Macdonald Polynomials of Types $C_n$ and $D_n$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a99/
LA  - en
ID  - SIGMA_2015_11_a99
ER  - 
%0 Journal Article
%A Boris Feigin
%A Ayumu Hoshino
%A Masatoshi Noumi
%A Jun Shibahara
%A Jun'ichi Shiraishi
%T Tableau Formulas for One-Row Macdonald Polynomials of Types $C_n$ and $D_n$
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a99/
%G en
%F SIGMA_2015_11_a99
Boris Feigin; Ayumu Hoshino; Masatoshi Noumi; Jun Shibahara; Jun'ichi Shiraishi. Tableau Formulas for One-Row Macdonald Polynomials of Types $C_n$ and $D_n$. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a99/

[1] Feigin B., Hoshino A., Shibahara J., Shiraishi J., Yanagida S., “Kernel function and quantum algebras”, Representation Theory and Combinatorics, RIMS Kôkyûroku, 1689, Res. Inst. Math. Sci. (RIMS), Kyoto, 2010, 133–152, arXiv: 1002.2485

[2] Frenkel E., Reshetikhin N., “Deformations of ${\mathcal W}$-algebras associated to simple Lie algebras”, Comm. Math. Phys., 197 (1998), 1–32, arXiv: q-alg/9708006 | MR | Zbl

[3] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 35, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[4] Hoshino A., Noumi M., Shiraishi J., Some transformation formulas associated with Askey–Wilson polynomials and Lassalle's formulas for Macdonald–Koornwinder polynomials, arXiv: 1406.1628

[5] Kashiwara M., Nakashima T., “Crystal graphs for representations of the $q$-analogue of classical Lie algebras”, J. Algebra, 165 (1994), 295–345 | DOI | MR | Zbl

[6] Koornwinder T. H., “Askey–Wilson polynomials for root systems of type $BC$”, Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemp. Math., 138, Amer. Math. Soc., Providence, RI, 1992, 189–204 | DOI | MR | Zbl

[7] Langer R., Schlosser M. J., Warnaar S. O., “Theta functions, elliptic hypergeometric series, and Kawanaka's Macdonald polynomial conjecture”, SIGMA, 5 (2009), 055, 20 pp., arXiv: 0905.4033 | DOI | MR | Zbl

[8] Lassalle M., “Some conjectures for Macdonald polynomials of type $B$, $C$, $D$”, Sém. Lothar. Combin., 52 (2005), B52h, 24 pp., arXiv: math.CO/0503149 | MR

[9] Lenart C., “Haglund–Haiman–Loehr type formulas for Hall–Littlewood polynomials of type $B$ and $C$”, Algebra Number Theory, 4 (2010), 887–917, arXiv: 0904.2407 | DOI | MR | Zbl

[10] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Oxford Science Publications, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR

[11] Macdonald I. G., “Orthogonal polynomials associated with root systems”, Sém. Lothar. Combin., 45 (2000), B45a, 40 pp., arXiv: math.QA/0011046 | MR | Zbl

[12] Noumi M., Shiraishi J., A direct approach to the bispectral problem for the Ruijsenaars–Macdonald $q$-difference operators, arXiv: 1206.5364

[13] Ram A., Yip M., “A combinatorial formula for Macdonald polynomials”, Adv. Math., 226 (2011), 309–331, arXiv: 0803.1146 | DOI | MR | Zbl

[14] van Diejen J. F., Emsiz E., “Pieri formulas for Macdonald's spherical functions and polynomials”, Math. Z., 269 (2011), 281–292, arXiv: 1009.4482 | DOI | MR | Zbl