A Classical Limit of Noumi's $q$-Integral Operator
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We demonstrate how a known Whittaker function integral identity arises from the $t=0$ and $q\to 1$ limit of the Macdonald polynomial eigenrelation satisfied by Noumi's $q$-integral operator.
Keywords: Macdonald polynomials; Whittaker functions.
@article{SIGMA_2015_11_a97,
     author = {Alexei Borodin and Ivan Corwin and Daniel Remenik},
     title = {A {Classical} {Limit} of {Noumi's} $q${-Integral} {Operator}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a97/}
}
TY  - JOUR
AU  - Alexei Borodin
AU  - Ivan Corwin
AU  - Daniel Remenik
TI  - A Classical Limit of Noumi's $q$-Integral Operator
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a97/
LA  - en
ID  - SIGMA_2015_11_a97
ER  - 
%0 Journal Article
%A Alexei Borodin
%A Ivan Corwin
%A Daniel Remenik
%T A Classical Limit of Noumi's $q$-Integral Operator
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a97/
%G en
%F SIGMA_2015_11_a97
Alexei Borodin; Ivan Corwin; Daniel Remenik. A Classical Limit of Noumi's $q$-Integral Operator. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a97/

[1] Abramowitz M., Stegun I. A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, U.S. Government Printing Office, Washington, D.C., 1964 | MR

[2] Borodin A., Corwin I., Macdonald processes,, Probab. Theory Related Fields, 158 (2014), 225–400, arXiv: 1111.4408 | DOI | MR | Zbl

[3] Borodin A., Corwin I., Gorin V., Shakirov S., “Observables of Macdonald processes”, Trans. Amer. Math. Soc. (to appear) , arXiv: 1306.0659 | DOI

[4] Feigin B., Hashizume K., Hoshino A., Shiraishi J., Yanagida S., “A commutative algebra on degenerate ${\mathbb{CP}}^1$ and Macdonald polynomials”, J. Math. Phys., 50 (2009), 095215, 42 pp., arXiv: 0904.2291 | DOI | MR | Zbl

[5] Gerasimov A., Kharchev S., Lebedev D., Oblezin S., “On a Gauss–Givental representation of quantum Toda chain wave function”, Int. Math. Res. Not., 2006 (2006), 96489, 23 pp., arXiv: math.RT/0505310 | DOI | MR | Zbl

[6] Gerasimov A., Lebedev D., Oblezin S., “Baxter operator and Archimedean Hecke algebra”, Comm. Math. Phys., 284 (2008), 867–896, arXiv: 0706.3476 | DOI | MR | Zbl

[7] Gerasimov A., Lebedev D., Oblezin S., “On $q$-deformed ${\mathfrak{gl}}_{\ell+1}$-Whittaker function, III”, Lett. Math. Phys., 97 (2011), 1–24, arXiv: 0805.3754 | DOI | MR | Zbl

[8] Gerasimov A., Lebedev D., Oblezin S., “On a classical limit of $q$-deformed Whittaker functions”, Lett. Math. Phys., 100 (2012), 279–290, arXiv: 1101.4567 | DOI | MR | Zbl

[9] Givental A., “Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture”, Topics in Singularity Theory, Amer. Math. Soc. Transl. Ser. 2, 180, Amer. Math. Soc., Providence, RI, 1997, 103–115, arXiv: alg-geom/9612001 | MR | Zbl

[10] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979 | MR

[11] Noumi M., Sano A., An infinite family of higher-order difference operators that commute with Ruijsenaars operators of type A, in preparation

[12] O'Connell N., Seppäläinen T., Zygouras N., “Geometric RSK correspondence, Whittaker functions and symmetrized random polymers”, Invent. Math., 197 (2014), 361–416, arXiv: 1210.5126 | DOI | MR | Zbl

[13] Stade E., “Archimedean $L$-factors on ${\rm GL}(n)\times{\rm GL}(n)$ and generalized Barnes integrals”, Israel J. Math., 127 (2002), 201–219, arXiv: 1102.2457 | DOI | MR | Zbl