@article{SIGMA_2015_11_a96,
author = {J. Harnad},
title = {Multispecies {Weighted} {Hurwitz} {Numbers}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a96/}
}
J. Harnad. Multispecies Weighted Hurwitz Numbers. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a96/
[1] Bouchard V., Mariño M., “Hurwitz numbers, matrix models and enumerative geometry”, From Hodge Theory to Integrability and TQFT: $\mathrm{tt}^*$-Geometry, Proc. Sympos. Pure Math., 78, Amer. Math. Soc., Providence, RI, 2008, 263–283, arXiv: 0709.1458 | DOI | MR | Zbl
[2] Diaconis P., Greene C., Applications of Murphy's elements, Stanford Technical Report, No 335, 1989
[3] Eynard B., “Invariants of spectral curves and intersection theory of moduli spaces of complex curves”, Commun. Number Theory Phys., 8 (2014), 541–588, arXiv: 1110.2949 | DOI | MR | Zbl
[4] Eynard B., Orantin N., “Invariants of algebraic curves and topological expansion”, Commun. Number Theory Phys., 1 (2007), 347–452, arXiv: math-ph/0702045 | DOI | MR | Zbl
[5] Eynard B., Orantin N., “Topological recursion in enumerative geometry and random matrices”, J. Phys. A: Math. Theor., 42 (2009), 293001, 117 pp., arXiv: 0811.3531 | DOI | MR | Zbl
[6] Faddeev L. D., Kashaev R. M., “Quantum dilogarithm”, Modern Phys. Lett. A, 9 (1994), 427–434, arXiv: hep-th/9310070 | DOI | MR | Zbl
[7] Frobenius G., “Über die Charaktere der symmetrischen Gruppe”, Sitzungsber. Königl. Preuss. Akad. Wiss., 1900, 516–534 | Zbl
[8] Frobenius G., “Über die charakterische Einheiten der symmetrischen Gruppe”, Sitzungsber. Königl. Preuss. Akad. Wiss., 1903, 328–358 | Zbl
[9] Goulden I. P., Jackson D. M., “The KP hierarchy, branched covers, and triangulations”, Adv. Math., 219 (2008), 932–951, arXiv: 0803.3980 | DOI | MR | Zbl
[10] Gross K. I., Richards D. S. P., “Special functions of matrix argument. I: Algebraic induction, zonal polynomials, and hypergeometric functions”, Trans. Amer. Math. Soc., 301 (1987), 781–811 | DOI | MR | Zbl
[11] Guay-Paquet M., Harnad J., “2D Toda $\tau$-functions as combinatorial generating functions”, Lett. Math. Phys., 105 (2015), 827–852 | DOI | MR | Zbl
[12] Guay-Paquet M., Harnad J., Generating functions for weighted Hurwitz numbers, arXiv: 1408.6766
[13] Harnad J., Quantum Hurwitz numbers and Macdonald polynomials, arXiv: 1504.03311
[14] Harnad J., Weighted Hurwitz numbers and hypergeometric $\tau$-functions: an overview, arXiv: 1504.03408
[15] Harnad J., Orlov A. Yu., “Hypergeometric $\tau$-functions, Hurwitz numbers and enumeration of paths”, Comm. Math. Phys., 338 (2015), 267–284, arXiv: 1407.7800 | DOI | MR | Zbl
[16] Hurwitz A., “Ueber Riemann'sche Fläsche mit gegebnise Verzweigungspunkten”, Math. Ann., 39 (1891), 1–60 | DOI | MR
[17] Hurwitz A., “Ueber die Anzahl der Riemann'sche Fläsche mit gegebnise Verzweigungspunkten”, Math. Ann., 55 (1902), 53–66 | DOI | MR | Zbl
[18] Jucys A.-A. A., “Symmetric polynomials and the center of the symmetric group ring”, Rep. Math. Phys., 5 (1974), 107–112 | DOI | MR | Zbl
[19] Lando S. K., Zvonkin A. K., Graphs on surfaces and their applications, Encyclopaedia of Mathematical Sciences, 141, Springer-Verlag, Berlin, 2004 | DOI | MR | Zbl
[20] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Oxford Science Publications, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR
[21] Murphy G. E., “A new construction of Young's seminormal representation of the symmetric groups”, J. Algebra, 69 (1981), 287–297 | DOI | MR | Zbl
[22] Natanzon S. M., Orlov A. Yu., Hurwitz numbers and BKP hierarchy, arXiv: 1407.8323
[23] Natanzon S. M., Orlov A. Yu., BKP and projective Hurwitz numbers, arXiv: 1501.01283
[24] Okounkov A., “Toda equations for Hurwitz numbers”, Math. Res. Lett., 7 (2000), 447–453, arXiv: math.AG/0004128 | DOI | MR | Zbl
[25] Orlov A. Yu., Shcherbin D. M., “Hypergeometric solutions of soliton equations”, Theoret. and Math. Phys., 128 (2001), 906–926 | DOI | MR | Zbl
[26] Pandharipande R., “The Toda equations and the Gromov–Witten theory of the Riemann sphere”, Lett. Math. Phys., 53 (2000), 59–74, arXiv: math.AG/9912166 | DOI | MR
[27] Schur I., “Neue Begründung der Theorie der Gruppencharaktere”, Sitzungsber. Königl. Preuss. Akad. Wiss., 1904, 406–432 | Zbl
[28] Takasaki K., “Initial value problem for the Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (Tokyo, 1982), Adv. Stud. Pure Math., 4, North-Holland, Amsterdam, 1984, 139–163 | MR
[29] Takebe T., “Representation theoretical meaning of the initial value problem for the Toda lattice hierarchy, I”, Lett. Math. Phys., 21 (1991), 77–84 | DOI | MR | Zbl
[30] Ueno K., Takasaki K., “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (Tokyo, 1982), Adv. Stud. Pure Math., 4, North-Holland, Amsterdam, 1984, 1–95 | MR