Multispecies Weighted Hurwitz Numbers
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The construction of hypergeometric $2D$ Toda $\tau$-functions as generating functions for weighted Hurwitz numbers is extended to multispecies families. Both the enumerative geometrical significance of multispecies weighted Hurwitz numbers, as weighted enumerations of branched coverings of the Riemann sphere, and their combinatorial significance in terms of weighted paths in the Cayley graph of $S_n$ are derived. The particular case of multispecies quantum weighted Hurwitz numbers is studied in detail.
Keywords: weighted Hurwitz number; $\tau$-function; multispecies.
@article{SIGMA_2015_11_a96,
     author = {J. Harnad},
     title = {Multispecies {Weighted} {Hurwitz} {Numbers}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a96/}
}
TY  - JOUR
AU  - J. Harnad
TI  - Multispecies Weighted Hurwitz Numbers
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a96/
LA  - en
ID  - SIGMA_2015_11_a96
ER  - 
%0 Journal Article
%A J. Harnad
%T Multispecies Weighted Hurwitz Numbers
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a96/
%G en
%F SIGMA_2015_11_a96
J. Harnad. Multispecies Weighted Hurwitz Numbers. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a96/

[1] Bouchard V., Mariño M., “Hurwitz numbers, matrix models and enumerative geometry”, From Hodge Theory to Integrability and TQFT: $\mathrm{tt}^*$-Geometry, Proc. Sympos. Pure Math., 78, Amer. Math. Soc., Providence, RI, 2008, 263–283, arXiv: 0709.1458 | DOI | MR | Zbl

[2] Diaconis P., Greene C., Applications of Murphy's elements, Stanford Technical Report, No 335, 1989

[3] Eynard B., “Invariants of spectral curves and intersection theory of moduli spaces of complex curves”, Commun. Number Theory Phys., 8 (2014), 541–588, arXiv: 1110.2949 | DOI | MR | Zbl

[4] Eynard B., Orantin N., “Invariants of algebraic curves and topological expansion”, Commun. Number Theory Phys., 1 (2007), 347–452, arXiv: math-ph/0702045 | DOI | MR | Zbl

[5] Eynard B., Orantin N., “Topological recursion in enumerative geometry and random matrices”, J. Phys. A: Math. Theor., 42 (2009), 293001, 117 pp., arXiv: 0811.3531 | DOI | MR | Zbl

[6] Faddeev L. D., Kashaev R. M., “Quantum dilogarithm”, Modern Phys. Lett. A, 9 (1994), 427–434, arXiv: hep-th/9310070 | DOI | MR | Zbl

[7] Frobenius G., “Über die Charaktere der symmetrischen Gruppe”, Sitzungsber. Königl. Preuss. Akad. Wiss., 1900, 516–534 | Zbl

[8] Frobenius G., “Über die charakterische Einheiten der symmetrischen Gruppe”, Sitzungsber. Königl. Preuss. Akad. Wiss., 1903, 328–358 | Zbl

[9] Goulden I. P., Jackson D. M., “The KP hierarchy, branched covers, and triangulations”, Adv. Math., 219 (2008), 932–951, arXiv: 0803.3980 | DOI | MR | Zbl

[10] Gross K. I., Richards D. S. P., “Special functions of matrix argument. I: Algebraic induction, zonal polynomials, and hypergeometric functions”, Trans. Amer. Math. Soc., 301 (1987), 781–811 | DOI | MR | Zbl

[11] Guay-Paquet M., Harnad J., “2D Toda $\tau$-functions as combinatorial generating functions”, Lett. Math. Phys., 105 (2015), 827–852 | DOI | MR | Zbl

[12] Guay-Paquet M., Harnad J., Generating functions for weighted Hurwitz numbers, arXiv: 1408.6766

[13] Harnad J., Quantum Hurwitz numbers and Macdonald polynomials, arXiv: 1504.03311

[14] Harnad J., Weighted Hurwitz numbers and hypergeometric $\tau$-functions: an overview, arXiv: 1504.03408

[15] Harnad J., Orlov A. Yu., “Hypergeometric $\tau$-functions, Hurwitz numbers and enumeration of paths”, Comm. Math. Phys., 338 (2015), 267–284, arXiv: 1407.7800 | DOI | MR | Zbl

[16] Hurwitz A., “Ueber Riemann'sche Fläsche mit gegebnise Verzweigungspunkten”, Math. Ann., 39 (1891), 1–60 | DOI | MR

[17] Hurwitz A., “Ueber die Anzahl der Riemann'sche Fläsche mit gegebnise Verzweigungspunkten”, Math. Ann., 55 (1902), 53–66 | DOI | MR | Zbl

[18] Jucys A.-A. A., “Symmetric polynomials and the center of the symmetric group ring”, Rep. Math. Phys., 5 (1974), 107–112 | DOI | MR | Zbl

[19] Lando S. K., Zvonkin A. K., Graphs on surfaces and their applications, Encyclopaedia of Mathematical Sciences, 141, Springer-Verlag, Berlin, 2004 | DOI | MR | Zbl

[20] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Oxford Science Publications, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR

[21] Murphy G. E., “A new construction of Young's seminormal representation of the symmetric groups”, J. Algebra, 69 (1981), 287–297 | DOI | MR | Zbl

[22] Natanzon S. M., Orlov A. Yu., Hurwitz numbers and BKP hierarchy, arXiv: 1407.8323

[23] Natanzon S. M., Orlov A. Yu., BKP and projective Hurwitz numbers, arXiv: 1501.01283

[24] Okounkov A., “Toda equations for Hurwitz numbers”, Math. Res. Lett., 7 (2000), 447–453, arXiv: math.AG/0004128 | DOI | MR | Zbl

[25] Orlov A. Yu., Shcherbin D. M., “Hypergeometric solutions of soliton equations”, Theoret. and Math. Phys., 128 (2001), 906–926 | DOI | MR | Zbl

[26] Pandharipande R., “The Toda equations and the Gromov–Witten theory of the Riemann sphere”, Lett. Math. Phys., 53 (2000), 59–74, arXiv: math.AG/9912166 | DOI | MR

[27] Schur I., “Neue Begründung der Theorie der Gruppencharaktere”, Sitzungsber. Königl. Preuss. Akad. Wiss., 1904, 406–432 | Zbl

[28] Takasaki K., “Initial value problem for the Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (Tokyo, 1982), Adv. Stud. Pure Math., 4, North-Holland, Amsterdam, 1984, 139–163 | MR

[29] Takebe T., “Representation theoretical meaning of the initial value problem for the Toda lattice hierarchy, I”, Lett. Math. Phys., 21 (1991), 77–84 | DOI | MR | Zbl

[30] Ueno K., Takasaki K., “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (Tokyo, 1982), Adv. Stud. Pure Math., 4, North-Holland, Amsterdam, 1984, 1–95 | MR