@article{SIGMA_2015_11_a95,
author = {Davit R. Petrosyan and George S. Pogosyan},
title = {Harmonic {Oscillator} on the $\mathrm{SO}(2,2)$ {Hyperboloid}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a95/}
}
Davit R. Petrosyan; George S. Pogosyan. Harmonic Oscillator on the $\mathrm{SO}(2,2)$ Hyperboloid. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a95/
[1] Ambrozio L. C., “On perturbations of the Schwarzschild anti-de Sitter spaces of positive mass”, Comm. Math. Phys., 337 (2015), 767–783, arXiv: 1402.4317 | DOI | MR | Zbl
[2] Bogush A. A., Kurochkin Yu. A., Otchik V. S., “The quantum-mechanical Kepler problem in three-dimensional Lobachevsky space”, Dokl. Akad. Nauk BSSR, 24 (1980), 19–22 | MR | Zbl
[3] Bracken P. F., “Hamiltonians for the quantum Hall effect on spaces with non-constant metrics”, Internat. J. Theoret. Phys., 46 (2007), 119–132, arXiv: math-ph/0607051 | DOI | MR | Zbl
[4] Calzada J. A., del Olmo M. A., Rodríguez M. A., “Classical superintegrable $\mathrm{ SO}(p,q)$ Hamiltonian systems”, J. Geom. Phys., 23 (1997), 14–30 | DOI | MR | Zbl
[5] Cariñena J. F., Perelomov A. M., Rañada M. F., “Isochronous classical systems and quantum systems with equally space spectra”, J. Phys. Conf. Ser., 87 (2007), 012007, 14 pp. | DOI
[6] Cariñena J. F., Rañada M. F., Santander M., “The harmonic oscillator on Riemannian and Lorentzian configuration spaces of constant curvature”, J. Math. Phys., 49 (2008), 032703, 27 pp., arXiv: 0709.2572 | DOI | MR | Zbl
[7] Chernikov N. A., “The Kepler problem in the Lobachevsky space and its solution”, Acta Phys. Polon. B, 23 (1992), 115–122 | MR
[8] del Olmo M. A., Rodríguez M. A., Winternitz P., “The conformal group $\mathrm{ SU}(2,2)$ and integrable systems on a Lorentzian hyperboloid”, Fortschr. Phys., 44 (1996), 199–233, arXiv: hep-th/9407080 | DOI | MR | Zbl
[9] Demkov Yu. N., “Symmetry group of the isotropic oscillator”, Soviet Phys. JETP, 9 (1959), 63–66 | MR | Zbl
[10] Dombrowski P., Zitterbarth J., “On the planetary motion in the $3$-dim. standard spaces $\mathbf{M}^3_\kappa$ of constant curvature $\kappa\in\mathbf{R}$”, Demonstratio Math., 24 (1991), 375–458 | MR | Zbl
[11] Evans N. W., “Superintegrability in classical mechanics”, Phys. Rev. A, 41 (1990), 5666–5676 | DOI | MR
[12] Fradkin D. M., “Existence of the dynamical symmetries $\mathrm{ O}_4$ and $\mathrm{ SU}_3$ for all classical central potential problems”, Progr. Theoret. Phys., 37 (1967), 798–812 | DOI | Zbl
[13] Gazeau J.-P., Piechocki W., “Coherent state quantization of a particle in de Sitter space”, J. Phys. A: Math. Gen., 37 (2004), 6977–6986, arXiv: hep-th/0308019 | DOI | MR | Zbl
[14] Gibbons G. W., “Anti-de-Sitter spacetime and its uses”, Mathematical and Quantum Aspects of Relativity and Cosmology (Pythagoreon, 1998), Lecture Notes in Phys., 537, Springer, Berlin, 2000, 102–142, arXiv: 1110.1206 | DOI | MR | Zbl
[15] Gradshteyn I. S., Ryzhik I. M., Table of integrals, series, and products, Academic Press, New York, 1980 | Zbl
[16] Grosche C., “On the path integral in imaginary Lobachevsky space”, J. Phys. A: Math. Gen., 27 (1994), 3475–3489, arXiv: hep-th/9310162 | DOI | MR | Zbl
[17] Grosche C., Pogosyan G. S., Sissakian A. N., “Path integral discussion for Smorodinsky–Winternitz potentials. I: Two- and three-dimensional Euclidean space”, Fortschr. Phys., 43 (1995), 453–521, arXiv: hep-th/9402121 | DOI | MR | Zbl
[18] Grosche C., Pogosyan G. S., Sissakian A. N., “Path integral discussion for Smorodinsky–Winternitz potentials. II: The two- and three-dimensional sphere”, Fortschr. Phys., 43 (1995), 523–563 | DOI | MR | Zbl
[19] Grosche C., Pogosyan G. S., Sissakian A. N., “Interbasis expansion for the Kaluza–Klein monopole system”, Symmetry Methods in Physics (Dubna, 1995), v. 1, Joint Inst. Nuclear Res., Dubna, 1996, 245–254 | MR
[20] Grosche C., Pogosyan G. S., Sissakian A. N., “Path-integral approach for superintegrable potentials on the three-dimensional hyperboloid”, Phys. Part. Nuclei, 28 (1997), 486–519 | DOI
[21] Hakobyan Ye. M., Pogosyan G. S., Sissakian A. N., Vinitsky S. I., “Isotropic oscillator in the space of constant positive curvature. Interbasis expansions”, Phys. Atomic Nuclei, 62 (1999), 623–637, arXiv: quant-ph/9710045 | MR
[22] Herranz F. J., Ballesteros Á., “Superintegrability on three-dimensional Riemannian and relativistic spaces of constant curvature”, SIGMA, 2 (2006), 010, 22 pp., arXiv: math-ph/0512084 | DOI | MR | Zbl
[23] Herranz F. J., Ballesteros Á., Santander M., Sanz-Gil T., “Maximally superintegrable Smorodinsky–Winternitz systems on the $N$-dimensional sphere and hyperbolic spaces”, Superintegrability in Classical and Quantum Systems, CRM Proc. Lecture Notes, 37, eds. P. Tempesta, P. Winternitz, J. Harnad, W. Miller (Jr.), G. Pogosyan, M. A. Rodrigues, Amer. Math. Soc., Providence, RI, 2004, 75–89, arXiv: math-ph/0501035 | MR | Zbl
[24] Higgs P. W., “Dynamical symmetries in a spherical geometry, I”, J. Phys. A: Math. Gen., 12 (1979), 309–323 | DOI | MR | Zbl
[25] Infeld L., Schild A., “A note on the Kepler problem in a space of constant negative curvature”, Phys. Rev., 67 (1945), 121–122 | DOI | MR | Zbl
[26] Jauch J. M., Hill E. L., “On the problem of degeneracy in quantum mechanics”, Phys. Rev., 57 (1940), 641–645 | DOI | MR | Zbl
[27] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Families of classical subgroup separable superintegrable systems”, J. Phys. A: Math. Theor., 43 (2010), 092001, 8 pp., arXiv: 0912.3158 | DOI | MR | Zbl
[28] Kalnins E. G., Kress J. M., Pogosyan G. S., Miller W. (Jr.), “Completeness of superintegrability in two-dimensional constant-curvature spaces”, J. Phys. A: Math. Gen., 34 (2001), 4705–4720, arXiv: math-ph/0102006 | DOI | MR | Zbl
[29] Kalnins E. G., Miller W. (Jr.), “The wave equation, $\mathrm{ O}(2, 2)$, and separation of variables on hyperboloids”, Proc. Roy. Soc. Edinburgh Sect. A, 79 (1978), 227–256 | DOI | MR
[30] Kalnins E. G., Miller W. (Jr.), Hakobyan Ye. M., Pogosyan G. S., “Superintegrability on the two-dimensional hyperboloid, II”, J. Math. Phys., 40 (1999), 2291–2306, arXiv: quant-ph/9907037 | DOI | MR | Zbl
[31] Kalnins E. G., Miller W. (Jr.), Pogosyan G. S., “Superintegrability on the two-dimensional hyperboloid”, J. Math. Phys., 38 (1997), 5416–5433 | DOI | MR | Zbl
[32] Kalnins E. G., Miller W. (Jr.), Pogosyan G. S., “The Coulomb-oscillator relation on $n$-dimensional spheres and hyperboloids”, Phys. Atomic Nuclei, 65 (2002), 1086–1094, arXiv: math-ph/0210002 | DOI | MR
[33] Kotecha V., Ward R. S., “Integrable Yang–Mills–Higgs equations in three-dimensional de Sitter space-time”, J. Math. Phys., 42 (2001), 1018–1025, arXiv: nlin.SI/0012004 | DOI | MR | Zbl
[34] Kozlov V. V., Harin A. O., “Kepler's problem in constant curvature spaces”, Celestial Mech. Dynam. Astronom., 54 (1992), 393–399 | DOI | MR | Zbl
[35] Landau L. D., Lifshitz E. M., Course of theoretical physics, v. 1, Mechanics, 3rd ed., Pergamon Press, Oxford–New York–Toronto, 1976 | MR
[36] Leemon H. I., “Dynamical symmetries in a spherical geometry, II”, J. Phys. A: Math. Gen., 12 (1979), 489–501 | DOI | MR | Zbl
[37] Liebmann H., Nichteuklidische Geometrie, 3 Auflage, W. de Gruyter Co, Berlin, 1923 | Zbl
[38] Lobachevsky N. I., Complete collected works, v. 2, GITTL, M., 1949
[39] Makarov A. A., Smorodinsky Ya. A., Valiev Kh., Winternitz P., “A systematic search for nonrelativistic systems with dynamical symmetries. I: The integrals of motion”, Nuovo Cimento A, 52 (1967), 1061–1084 | DOI
[40] Miller W. (Jr.), Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46 (2013), 423001, 97 pp., arXiv: 1309.2694 | DOI | MR | Zbl
[41] Olevskii M. N., “Triorthogonal systems in spaces of constant curvature in which the equation $\Delta_2u+\lambda u=0$ allows a complete separation of variables”, Mat. Sb., 27 (1950), 379–426 | MR
[42] Parker L. E., Toms D. J., Quantum field theory in curved spacetime. Quantized fields and gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2009 | DOI | MR | Zbl
[43] Petrosyan D. R., Pogosyan G. S., “The Kepler–Coulomb problem on $\mathrm{SO}(2,2)$ hyperboloid”, Phys. Atomic Nuclei, 75 (2012), 1272–1278 | DOI
[44] Petrosyan D. R., Pogosyan G. S., “Classical Kepler–Coulomb problem on $\mathrm{SO}(2,2)$ hyperboloid”, Phys. Atomic Nuclei, 76 (2013), 1273–1283 | DOI
[45] Petrosyan D. R., Pogosyan G. S., “Oscillator problem on $\mathrm{SO}(2,2)$ hyperboloid”, Nonlinear Phenom. Complex Syst., 17 (2014), 405–408 | Zbl
[46] Schrödinger E., “A method of determining quantum-mechanical eigenvalues and eigenfunctions”, Proc. Roy. Irish Acad. Sect. A, 46 (1940), 9–16 | MR
[47] Sławianowski J. J., “Bertrand systems on spaces of constant sectional curvature. The action-angle analysis”, Rep. Math. Phys., 46 (2000), 429–460 | DOI | MR
[48] 't Hooft G., “Nonperturbative $2$ particle scattering amplitudes in $2+1$-dimensional quantum gravity”, Comm. Math. Phys., 117 (1988), 685–700 | DOI | MR | Zbl
[49] Varlamov V. V., “CPT groups of spinor fields in de Sitter and anti-de Sitter spaces”, Adv. Appl. Clifford Algebr., 25 (2015), 487–516, arXiv: 1401.7723 | DOI | MR | Zbl
[50] Winternitz P., Smorodinskiĭ Ya. A., Uhlíř M., FriŠ I., “Symmetry groups in classical and quantum mechanics”, Soviet J. Nuclear Phys., 4 (1967), 444–450 | MR
[51] Zhou Z., “Solutions of the Yang–Mills–Higgs equations in $(2+1)$-dimensional anti-de Sitter space-time”, J. Math. Phys., 42 (2001), 1085–1099, arXiv: nlin/0011020 | DOI | MR | Zbl