@article{SIGMA_2015_11_a94,
author = {Karen Ogilvie and Adri B. Olde Daalhuis},
title = {Rigorous {Asymptotics} for the {Lam\'e} and {Mathieu} {Functions} and their {Respective} {Eigenvalues} with a {Large} {Parameter}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a94/}
}
TY - JOUR AU - Karen Ogilvie AU - Adri B. Olde Daalhuis TI - Rigorous Asymptotics for the Lamé and Mathieu Functions and their Respective Eigenvalues with a Large Parameter JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a94/ LA - en ID - SIGMA_2015_11_a94 ER -
%0 Journal Article %A Karen Ogilvie %A Adri B. Olde Daalhuis %T Rigorous Asymptotics for the Lamé and Mathieu Functions and their Respective Eigenvalues with a Large Parameter %J Symmetry, integrability and geometry: methods and applications %D 2015 %V 11 %U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a94/ %G en %F SIGMA_2015_11_a94
Karen Ogilvie; Adri B. Olde Daalhuis. Rigorous Asymptotics for the Lamé and Mathieu Functions and their Respective Eigenvalues with a Large Parameter. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a94/
[1] Al-Gwaiz M. A., Sturm–{L}iouville theory and its applications, Springer Undergraduate Mathematics Series, Springer-Verlag London, Ltd., London, 2008 | DOI | MR | Zbl
[2] Arscott F. M., Periodic differential equations. An introduction to Mathieu, Lamé, and allied functions, International Series of Monographs in Pure and Applied Mathematics, 66, The Macmillan Co., New York, 1964 | MR
[3] Dingle R. B., Müller H. J. W., “Asymptotic expansions of Mathieu functions and their characteristic numbers”, J. Reine Angew. Math., 211 (1962), 11–32 | DOI | MR | Zbl
[4] Dunster T. M., “Uniform asymptotic approximation of Mathieu functions”, Methods Appl. Anal., 1 (1994), 143–168 | MR | Zbl
[5] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. III, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1955 | Zbl
[6] Goldstein S., “Mathieu functions”, Trans. Cambridge Philos. Soc., 23, 1927, 303–336 | Zbl
[7] Goldstein S., “On the asymptotic expansion of the characteristic numbers of the Mathieu equation”, Proc. Roy. Soc. Edinburgh, 49 (1930), 210–223 | DOI
[8] Ince E. L., “Researches into the characteristic numbers of the Mathieu equation”, Proc. Roy. Soc. Edinburgh, 46 (1927), 20–29 | DOI
[9] Ince E. L., “Researches into the characteristic numbers of the Mathieu equation (second paper)”, Proc. Roy. Soc. Edinburgh, 46 (1927), 316–322 | DOI
[10] Ince E. L., “Researches into the characteristic numbers of the Mathieu equation (third paper)”, Proc. Roy. Soc. Edinburgh, 47 (1928), 294–301 | DOI
[11] Ince E. L., “The periodic Lamé functions”, Proc. Roy. Soc. Edinburgh, 60 (1940), 47–63 | DOI | MR
[12] Ince E. L., “Further investigations into the periodic Lamé functions”, Proc. Roy. Soc. Edinburgh, 60 (1940), 83–99 | DOI | MR
[13] Kurz M., Fehlerabschätzungen zu asymptotischen Entwicklungen der Eigenwerte und Eigenlösungen der Mathieuschen Differentialgleichung, Ph.D. Thesis, Universität Duisburg-Essen, Essen, 1979
[14] Lamé G., “Sur les surfaces isothermes dans les corps homogènes en équilibre de température”, J. Math. Pures Appl., 2 (1837), 147–188
[15] Mathieu E., “Mémoire sur le mouvement vibratoire d'une membrane de forme elliptique”, J. Math. Pures Appl., 13 (1868), 137–203
[16] McLachlan N. W., Theory and application of Mathieu functions, Dover Publications, Inc., New York, 1964 | MR | Zbl
[17] Meixner J., Schäfke F. W., Mathieusche Funktionen und Sphäroidfunktionen mit Anwendungen auf physikalische und technische Probleme, Die Grundlehren der mathematischen Wissenschaften, 71, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1954 | DOI | MR
[18] Müller H. J. W., “Asymptotic expansions of ellipsoidal wave functions and their characteristic numbers”, Math. Nachr., 31 (1966), 89–101 | DOI | MR
[19] Müller H. J. W., “Asymptotic expansions of ellipsoidal wave functions in terms of Hermite functions”, Math. Nachr., 32 (1966), 49–62 | DOI | MR
[20] Müller H. J. W., “On asymptotic expansions of ellipsoidal wave functions”, Math. Nachr., 32 (1966), 157–172 | DOI | MR
[21] Olver F. W. J., “Second-order linear differential equations with two turning points”, Philos. Trans. Roy. Soc. London Ser. A, 278 (1975), 137–174 | DOI | MR | Zbl
[22] Olver F. W. J., Asymptotics and special functions, AKP Classics, A. K. Peters, Ltd., Wellesley, MA, 1997 | MR | Zbl
[23] Olver F. W. J., Lozier D. W., Boisvert R. F., Clark C. W. (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010, print companion to [24] | MR
[24] NIST digital library of mathematical functions, Release 1.0.10 of 2015-08-07, online companion to [23], http://dlmf.nist.gov/
[25] Sips R., “Représentation asymptotique des fonctions de Mathieu et des fonctions d'onde sphéroidales”, Trans. Amer. Math. Soc., 66 (1949), 93–134 | DOI | MR | Zbl
[26] Sips R., “Représentation asymptotique des fonctions de Mathieu et des fonctions sphéroidales, II”, Trans. Amer. Math. Soc., 90 (1959), 340–368 | DOI | MR | Zbl
[27] Sips R., “Représentation asymptotique de la solution générale de l'équation de Mathieu–Hill”, Bull. Cl. Sci. V Sér., 51 (1965), 1415–1446 | MR | Zbl
[28] Weinstein M. I., Keller J. B., “Hill's equation with a large potential”, SIAM J. Appl. Math., 45 (1985), 200–214 | DOI | MR | Zbl
[29] Whittaker E. T., Watson G. N., A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996 | MR | Zbl