@article{SIGMA_2015_11_a93,
author = {Claudia Maria Chanu and Luca Degiovanni and Giovanni Rastelli},
title = {Extended {Hamiltonians,} {Coupling-Constant} {Metamorphosis} and the {Post{\textendash}Winternitz} {System}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a93/}
}
TY - JOUR AU - Claudia Maria Chanu AU - Luca Degiovanni AU - Giovanni Rastelli TI - Extended Hamiltonians, Coupling-Constant Metamorphosis and the Post–Winternitz System JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a93/ LA - en ID - SIGMA_2015_11_a93 ER -
%0 Journal Article %A Claudia Maria Chanu %A Luca Degiovanni %A Giovanni Rastelli %T Extended Hamiltonians, Coupling-Constant Metamorphosis and the Post–Winternitz System %J Symmetry, integrability and geometry: methods and applications %D 2015 %V 11 %U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a93/ %G en %F SIGMA_2015_11_a93
Claudia Maria Chanu; Luca Degiovanni; Giovanni Rastelli. Extended Hamiltonians, Coupling-Constant Metamorphosis and the Post–Winternitz System. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a93/
[1] Borisov A. V., Kilin A. A., Mamaev I. S., “Superintegrable system on a sphere with the integral of higher degree”, Regul. Chaotic Dyn., 14 (2009), 615–620 | DOI | MR | Zbl
[2] Boyer C. P., Kalnins E. G., Miller W. (Jr.), “Stäckel-equivalent integrable Hamiltonian systems”, SIAM J. Math. Anal., 17 (1986), 778–797 | DOI | MR | Zbl
[3] Chanu C., Degiovanni L., Rastelli G., “Superintegrable three-body systems on the line”, J. Math. Phys., 49 (2008), 112901, 10 pp., arXiv: 0802.1353 | DOI | MR | Zbl
[4] Chanu C. M., Degiovanni L., Rastelli G., “Generalizations of a method for constructing first integrals of a class of natural Hamiltonians and some remarks about quantization”, J. Phys. Conf. Ser., 343 (2012), 012101, 15 pp., arXiv: 1111.0030 | DOI | MR
[5] Chanu C. M., Degiovanni L., Rastelli G., “Superintegrable extensions of superintegrable systems”, SIGMA, 8 (2012), 070, 12 pp., arXiv: 1210.3126 | DOI | MR | Zbl
[6] Chanu C. M., Degiovanni L., Rastelli G., “Extensions of Hamiltonian systems dependent on a rational parameter”, J. Math. Phys., 55 (2014), 122703, 11 pp., arXiv: 1310.5690 | DOI | MR | Zbl
[7] Chanu C. M., Degiovanni L., Rastelli G., “The Tremblay–Turbiner–Winternitz system as extended Hamiltonian”, J. Math. Phys., 55 (2014), 122701, 8 pp., arXiv: 1404.4825 | DOI | MR | Zbl
[8] Chanu C. M., Degiovanni L., Rastelli G., “Warped product of Hamiltonians and extensions of Hamiltonian systems”, J. Phys. Conf. Ser., 597 (2015), 012024, 10 pp. | DOI
[9] Hietarinta J., Grammaticos B., Dorizzi B., Ramani A., “Coupling-constant metamorphosis and duality between integrable Hamiltonian systems”, Phys. Rev. Lett., 53 (1984), 1707–1710 | DOI | MR
[10] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Tools for verifying classical and quantum superintegrability”, SIGMA, 6 (2010), 066, 23 pp., arXiv: 1006.0864 | DOI | MR | Zbl
[11] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Superintegrability in a non-conformally-flat space”, J. Phys. A: Math. Theor., 46 (2013), 022002, 12 pp., arXiv: 1211.1452 | DOI | MR
[12] Kalnins E. G., Miller W. (Jr.), Post S., “Coupling constant metamorphosis and $N$th-order symmetries in classical and quantum mechanics”, J. Phys. A: Math. Theor., 43 (2010), 035202, 20 pp., arXiv: 0908.4393 | DOI | MR | Zbl
[13] Maciejewski A. J., Przybylska M., Yoshida H., “Necessary conditions for classical super-integrability of a certain family of potentials in constant curvature spaces”, J. Phys. A: Math. Theor., 43 (2010), 382001, 15 pp., arXiv: 1004.3854 | DOI | MR | Zbl
[14] Miller W. (Jr.), Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46 (2013), 423001, 97 pp., arXiv: 1309.2694 | DOI | MR | Zbl
[15] Post S., Winternitz P., “An infinite family of superintegrable deformations of the Coulomb potential”, J. Phys. A: Math. Theor., 43 (2010), 222001, 11 pp., arXiv: 1003.5230 | DOI | MR | Zbl
[16] Rajaratnam K., McLenaghan R. G., “Killing tensors, warped products and the orthogonal separation of the Hamilton–Jacobi equation”, J. Math. Phys., 55 (2014), 013505, 27 pp., arXiv: 1404.3161 | DOI | MR | Zbl
[17] Rañada M. F., “Master symmetries, non-Hamiltonian symmetries and superintegrability of the generalized Smorodinsky–Winternitz system”, J. Phys. A: Math. Theor., 45 (2012), 145204, 13 pp. | DOI | MR
[18] Rañada M. F., “The Tremblay–Turbiner–Winternitz system on spherical and hyperbolic spaces: superintegrability, curvature-dependent formalism and complex factorization”, J. Phys. A: Math. Theor., 47 (2014), 165203, 9 pp., arXiv: 1403.6266 | DOI | MR
[19] Rañada M. F., Santander M., “Superintegrable systems on the two-dimensional sphere $S^2$ and the hyperbolic plane $H^2$”, J. Math. Phys., 40 (1999), 5026–5057 | DOI | MR
[20] Tashiro Y., “Complete Riemannian manifolds and some vector fields”, Trans. Amer. Math. Soc., 117 (1965), 251–275 | DOI | MR | Zbl
[21] Tremblay F., Turbiner A. V., Winternitz P., “An infinite family of solvable and integrable quantum systems on a plane”, J. Phys. A: Math. Theor., 42 (2009), 242001, 10 pp., arXiv: 0904.0738 | DOI | MR | Zbl
[22] Verrier P. E., Evans N. W., “A new superintegrable Hamiltonian”, J. Math. Phys., 49 (2008), 022902, 8 pp., arXiv: 0712.3677 | DOI | MR | Zbl