Extended Hamiltonians, Coupling-Constant Metamorphosis and the Post–Winternitz System
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The coupling-constant metamorphosis is applied to modified extended Hamiltonians and sufficient conditions are found in order that the transformed high-degree first integral of the transformed Hamiltonian is determined by the same algorithm which computes the corresponding first integral of the original extended Hamiltonian. As examples, we consider the Post–Winternitz system and the 2D caged anisotropic oscillator.
Keywords: superintegrable systems; extended systems; coupling-constant metamorphosis.
@article{SIGMA_2015_11_a93,
     author = {Claudia Maria Chanu and Luca Degiovanni and Giovanni Rastelli},
     title = {Extended {Hamiltonians,} {Coupling-Constant} {Metamorphosis} and the {Post{\textendash}Winternitz} {System}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a93/}
}
TY  - JOUR
AU  - Claudia Maria Chanu
AU  - Luca Degiovanni
AU  - Giovanni Rastelli
TI  - Extended Hamiltonians, Coupling-Constant Metamorphosis and the Post–Winternitz System
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a93/
LA  - en
ID  - SIGMA_2015_11_a93
ER  - 
%0 Journal Article
%A Claudia Maria Chanu
%A Luca Degiovanni
%A Giovanni Rastelli
%T Extended Hamiltonians, Coupling-Constant Metamorphosis and the Post–Winternitz System
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a93/
%G en
%F SIGMA_2015_11_a93
Claudia Maria Chanu; Luca Degiovanni; Giovanni Rastelli. Extended Hamiltonians, Coupling-Constant Metamorphosis and the Post–Winternitz System. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a93/

[1] Borisov A. V., Kilin A. A., Mamaev I. S., “Superintegrable system on a sphere with the integral of higher degree”, Regul. Chaotic Dyn., 14 (2009), 615–620 | DOI | MR | Zbl

[2] Boyer C. P., Kalnins E. G., Miller W. (Jr.), “Stäckel-equivalent integrable Hamiltonian systems”, SIAM J. Math. Anal., 17 (1986), 778–797 | DOI | MR | Zbl

[3] Chanu C., Degiovanni L., Rastelli G., “Superintegrable three-body systems on the line”, J. Math. Phys., 49 (2008), 112901, 10 pp., arXiv: 0802.1353 | DOI | MR | Zbl

[4] Chanu C. M., Degiovanni L., Rastelli G., “Generalizations of a method for constructing first integrals of a class of natural Hamiltonians and some remarks about quantization”, J. Phys. Conf. Ser., 343 (2012), 012101, 15 pp., arXiv: 1111.0030 | DOI | MR

[5] Chanu C. M., Degiovanni L., Rastelli G., “Superintegrable extensions of superintegrable systems”, SIGMA, 8 (2012), 070, 12 pp., arXiv: 1210.3126 | DOI | MR | Zbl

[6] Chanu C. M., Degiovanni L., Rastelli G., “Extensions of Hamiltonian systems dependent on a rational parameter”, J. Math. Phys., 55 (2014), 122703, 11 pp., arXiv: 1310.5690 | DOI | MR | Zbl

[7] Chanu C. M., Degiovanni L., Rastelli G., “The Tremblay–Turbiner–Winternitz system as extended Hamiltonian”, J. Math. Phys., 55 (2014), 122701, 8 pp., arXiv: 1404.4825 | DOI | MR | Zbl

[8] Chanu C. M., Degiovanni L., Rastelli G., “Warped product of Hamiltonians and extensions of Hamiltonian systems”, J. Phys. Conf. Ser., 597 (2015), 012024, 10 pp. | DOI

[9] Hietarinta J., Grammaticos B., Dorizzi B., Ramani A., “Coupling-constant metamorphosis and duality between integrable Hamiltonian systems”, Phys. Rev. Lett., 53 (1984), 1707–1710 | DOI | MR

[10] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Tools for verifying classical and quantum superintegrability”, SIGMA, 6 (2010), 066, 23 pp., arXiv: 1006.0864 | DOI | MR | Zbl

[11] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Superintegrability in a non-conformally-flat space”, J. Phys. A: Math. Theor., 46 (2013), 022002, 12 pp., arXiv: 1211.1452 | DOI | MR

[12] Kalnins E. G., Miller W. (Jr.), Post S., “Coupling constant metamorphosis and $N$th-order symmetries in classical and quantum mechanics”, J. Phys. A: Math. Theor., 43 (2010), 035202, 20 pp., arXiv: 0908.4393 | DOI | MR | Zbl

[13] Maciejewski A. J., Przybylska M., Yoshida H., “Necessary conditions for classical super-integrability of a certain family of potentials in constant curvature spaces”, J. Phys. A: Math. Theor., 43 (2010), 382001, 15 pp., arXiv: 1004.3854 | DOI | MR | Zbl

[14] Miller W. (Jr.), Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46 (2013), 423001, 97 pp., arXiv: 1309.2694 | DOI | MR | Zbl

[15] Post S., Winternitz P., “An infinite family of superintegrable deformations of the Coulomb potential”, J. Phys. A: Math. Theor., 43 (2010), 222001, 11 pp., arXiv: 1003.5230 | DOI | MR | Zbl

[16] Rajaratnam K., McLenaghan R. G., “Killing tensors, warped products and the orthogonal separation of the Hamilton–Jacobi equation”, J. Math. Phys., 55 (2014), 013505, 27 pp., arXiv: 1404.3161 | DOI | MR | Zbl

[17] Rañada M. F., “Master symmetries, non-Hamiltonian symmetries and superintegrability of the generalized Smorodinsky–Winternitz system”, J. Phys. A: Math. Theor., 45 (2012), 145204, 13 pp. | DOI | MR

[18] Rañada M. F., “The Tremblay–Turbiner–Winternitz system on spherical and hyperbolic spaces: superintegrability, curvature-dependent formalism and complex factorization”, J. Phys. A: Math. Theor., 47 (2014), 165203, 9 pp., arXiv: 1403.6266 | DOI | MR

[19] Rañada M. F., Santander M., “Superintegrable systems on the two-dimensional sphere $S^2$ and the hyperbolic plane $H^2$”, J. Math. Phys., 40 (1999), 5026–5057 | DOI | MR

[20] Tashiro Y., “Complete Riemannian manifolds and some vector fields”, Trans. Amer. Math. Soc., 117 (1965), 251–275 | DOI | MR | Zbl

[21] Tremblay F., Turbiner A. V., Winternitz P., “An infinite family of solvable and integrable quantum systems on a plane”, J. Phys. A: Math. Theor., 42 (2009), 242001, 10 pp., arXiv: 0904.0738 | DOI | MR | Zbl

[22] Verrier P. E., Evans N. W., “A new superintegrable Hamiltonian”, J. Math. Phys., 49 (2008), 022902, 8 pp., arXiv: 0712.3677 | DOI | MR | Zbl