Post-Lie Algebras and Isospectral Flows
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we explore the Lie enveloping algebra of a post-Lie algebra derived from a classical $R$-matrix. An explicit exponential solution of the corresponding Lie bracket flow is presented. It is based on the solution of a post-Lie Magnus-type differential equation.
Keywords: isospectral flow equation; $R$-matrix; Magnus expansion; post-Lie algebra.
@article{SIGMA_2015_11_a92,
     author = {Kurush Ebrahimi-Fard and Alexander Lundervold and Igor Mencattini and Hans Z. Munthe-Kaas},
     title = {Post-Lie {Algebras} and {Isospectral} {Flows}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a92/}
}
TY  - JOUR
AU  - Kurush Ebrahimi-Fard
AU  - Alexander Lundervold
AU  - Igor Mencattini
AU  - Hans Z. Munthe-Kaas
TI  - Post-Lie Algebras and Isospectral Flows
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a92/
LA  - en
ID  - SIGMA_2015_11_a92
ER  - 
%0 Journal Article
%A Kurush Ebrahimi-Fard
%A Alexander Lundervold
%A Igor Mencattini
%A Hans Z. Munthe-Kaas
%T Post-Lie Algebras and Isospectral Flows
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a92/
%G en
%F SIGMA_2015_11_a92
Kurush Ebrahimi-Fard; Alexander Lundervold; Igor Mencattini; Hans Z. Munthe-Kaas. Post-Lie Algebras and Isospectral Flows. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a92/

[1] Babelon O., Bernard D., Talon M., Introduction to classical integrable systems, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2003 | DOI | MR | Zbl

[2] Bai C., Guo L., Ni X., “Nonabelian generalized Lax pairs, the classical Yang–Baxter equation and PostLie algebras”, Comm. Math. Phys., 297 (2010), 553–596, arXiv: 0910.3262 | DOI | MR | Zbl

[3] Burde D., “Left-symmetric algebras, or pre-Lie algebras in geometry and physics”, Cent. Eur. J. Math., 4 (2006), 323–357, arXiv: math-ph/0509016 | DOI | MR | Zbl

[4] Cartier P., “Vinberg algebras, Lie groups and combinatorics”, Quanta of Maths, Clay Math. Proc., 11, Amer. Math. Soc., Providence, RI, 2010, 107–126 | MR | Zbl

[5] Casas F., “Numerical integration methods for the double-bracket flow”, J. Comput. Appl. Math., 166 (2004), 477–495 | DOI | MR | Zbl

[6] Casas F., Iserles A., “Explicit Magnus expansions for nonlinear equations”, J. Phys. A: Math. Gen., 39 (2006), 5445–5461 | DOI | MR | Zbl

[7] Chapoton F., Livernet M., “Pre-Lie algebras and the rooted trees operad”, Int. Math. Res. Not., 2001:8 (2001), 395–408, arXiv: math.QA/0002069 | DOI | MR | Zbl

[8] Chu M. T., Norris L. K., “Isospectral flows and abstract matrix factorizations”, SIAM J. Numer. Anal., 25 (1988), 1383–1391 | DOI | MR | Zbl

[9] Ebrahimi-Fard K., Guo L., Manchon D., “Birkhoff type decompositions and the Baker–Campbell–Hausdorff recursion”, Comm. Math. Phys., 267 (2006), 821–845, arXiv: math-ph/0602004 | DOI | MR | Zbl

[10] Ebrahimi-Fard K., Lundervold A., Munthe-Kaas H. Z., “On the Lie enveloping algebra of a post-Lie algebra”, J. Lie Theory, 25 (2015), 1139–1165, arXiv: 1410.6350 | MR

[11] Faibusovich L. E., “${\rm QR}$-type factorizations, the Yang–Baxter equation, and an eigenvalue problem of control theory”, Linear Algebra Appl., 122–124 (1989), 943–971 | DOI | MR | Zbl

[12] Lax P. D., “Outline of a theory of the KdV equation”, Recent Mathematical Methods in Nonlinear Wave Propagation (Montecatini Terme, 1994), Lecture Notes in Math., 1640, Springer, Berlin, 1996, 70–102 | DOI | MR | Zbl

[13] Manchon D., “A short survey on pre-Lie algebras”, Noncommutative Geometry and Physics: Renormalisation, Motives, Index Theory, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2011, 89–102 | DOI | MR | Zbl

[14] Munthe-Kaas H. Z., Lundervold A., “On post-Lie algebras, Lie–Butcher series and moving frames”, Found. Comput. Math., 13 (2013), 583–613, arXiv: 1203.4738 | DOI | MR | Zbl

[15] Oudom J.-M., Guin D., “On the Lie enveloping algebra of a pre-Lie algebra”, J. $K$-Theory, 2 (2008), 147–167, arXiv: math.QA/0404457 | DOI | MR | Zbl

[16] Reshetikhin N. Yu., Semenov-Tian-Shansky M. A., “Quantum $R$-matrices and factorization problems”, J. Geom. Phys., 5 (1988), 533–550 | DOI | MR | Zbl

[17] Semenov-Tjan-Shanskii M. A., What is a classical $r$-matrix?, Funct. Anal. Appl., 17 (1983), 259–272 | DOI

[18] Semenov-Tjan-Shanskii M. A., “Classical $r$-matrix and quantization”, J. Sov. Math., 31 (1985), 3411–3416 | DOI

[19] Suris Yu. B., The problem of integrable discretization: Hamiltonian approach, Progress in Mathematics, 219, Birkhäuser Verlag, Basel, 2003 | DOI | MR | Zbl

[20] Sweedler M. E., Hopf algebras, Mathematics Lecture Note Series, W.A. Benjamin Inc., New York, 1969 | MR | Zbl

[21] Vallette B., Homology of generalized partition posets,, J. Pure Appl. Algebra, 208 (2007), 699–725, arXiv: math.AT/0405312 | DOI | MR | Zbl

[22] Watkins D. S., “Isospectral flows”, SIAM Rev., 26 (1984), 379–391 | DOI | MR | Zbl