Differential Galois Theory and Lie Symmetries
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the interplay between the differential Galois group and the Lie algebra of infinitesimal symmetries of systems of linear differential equations. We show that some symmetries can be seen as solutions of a hierarchy of linear differential systems. We show that the existence of rational symmetries constrains the differential Galois group in the system in a way that depends of the Maclaurin series of the symmetry along the zero solution.
Keywords: linear differential system; Picard–Vessiot theory; differential Galois theory; infinitesimal symmetries.
@article{SIGMA_2015_11_a91,
     author = {David Bl\'azquez-Sanz and Juan J. Morales-Ruiz and Jacques-Arthur Weil},
     title = {Differential {Galois} {Theory} and {Lie} {Symmetries}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a91/}
}
TY  - JOUR
AU  - David Blázquez-Sanz
AU  - Juan J. Morales-Ruiz
AU  - Jacques-Arthur Weil
TI  - Differential Galois Theory and Lie Symmetries
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a91/
LA  - en
ID  - SIGMA_2015_11_a91
ER  - 
%0 Journal Article
%A David Blázquez-Sanz
%A Juan J. Morales-Ruiz
%A Jacques-Arthur Weil
%T Differential Galois Theory and Lie Symmetries
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a91/
%G en
%F SIGMA_2015_11_a91
David Blázquez-Sanz; Juan J. Morales-Ruiz; Jacques-Arthur Weil. Differential Galois Theory and Lie Symmetries. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a91/

[1] Athorne C., “Symmetries of linear ordinary differential equations”, J. Phys. A: Math. Gen., 30 (1997), 4639–4649 | DOI | MR | Zbl

[2] Ayoul M., Zung N. T., “Galoisian obstructions to non-Hamiltonian integrability”, C. R. Math. Acad. Sci. Paris, 348 (2010), 1323–1326, arXiv: 0901.4586 | DOI | MR | Zbl

[3] Barkatou M. A., “Factoring systems of linear functional equations using eigenrings”, Computer Algebra 2006, World Sci. Publ., Hackensack, NJ, 2007, 22–42 | DOI | MR

[4] Blázquez-Sanz D., Morales-Ruiz J. J., “Differential Galois theory of algebraic Lie–Vessiot systems”, Differential Algebra, Complex Analysis and Orthogonal Polynomials, Contemp. Math., 509, Amer. Math. Soc., Providence, RI, 2010, 1–58, arXiv: 0901.4480 | DOI | MR

[5] Blázquez-Sanz D., Morales-Ruiz J. J., “Lie's reduction method and differential Galois theory in the complex analytic context”, Discrete Contin. Dyn. Syst., 32 (2012), 353–379, arXiv: 0901.4479 | DOI | MR

[6] Bogoyavlenskij O. I., “A concept of integrability of dynamical systems”, C. R. Math. Rep. Acad. Sci. Canada, 18 (1996), 163–168 | MR | Zbl

[7] Bogoyavlenskij O. I., “Hidden structure of symmetries”, Comm. Math. Phys., 254 (2005), 479–488 | DOI | MR | Zbl

[8] Crespo T., Hajto Z., Algebraic groups and differential Galois theory, Graduate Studies in Mathematics, 122, Amer. Math. Soc., Providence, RI, 2011 | DOI | MR | Zbl

[9] Jensen C. V., “Linear ODEs and ${\mathcal D}$-modules, solving and decomposing equations using symmetry methods”, Lobachevskii J. Math., 17 (2005), 149–212 | MR

[10] Katz N. M., “A conjecture in the arithmetic theory of differential equations”, Bull. Soc. Math. France, 110 (1982), 203–239 | MR | Zbl

[11] Kushner A., Lychagin V., Rubtsov V., Contact geometry and nonlinear differential equations, Encyclopedia of Mathematics and its Applications, 101, Cambridge University Press, Cambridge, 2007 | MR | Zbl

[12] Malgrange B., “On nonlinear differential Galois theory”, Chinese Ann. Math. Ser. B, 23 (2002), 219–226 | DOI | MR | Zbl

[13] Morales-Ruiz J. J., Differential Galois theory and non-integrability of Hamiltonian systems, Progress in Mathematics, 179, Birkhäuser Verlag, Basel, 1999 | DOI | MR | Zbl

[14] Morales-Ruiz J. J., “Picard–Vessiot theory and integrability”, J. Geom. Phys., 87 (2015), 314–343 | DOI | MR | Zbl

[15] Morales-Ruiz J. J., Ramis J.-P., “Galoisian obstructions to integrability of Hamiltonian systems”, Methods Appl. Anal., 8 (2001), 33–96 | MR

[16] Olver P. J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1986 | DOI | MR | Zbl

[17] Oudshoorn W. R., van der Put M., “Lie symmetries and differential Galois groups of linear equations”, Math. Comp., 71 (2002), 349–361 | DOI | MR | Zbl

[18] Seidenberg A., “Abstract differential algebra and the analytic case”, Proc. Amer. Math. Soc., 9 (1958), 159–164 | DOI | MR | Zbl

[19] Seidenberg A., “Abstract differential algebra and the analytic case, II”, Proc. Amer. Math. Soc., 23 (1969), 689–691 | DOI | MR | Zbl

[20] Singer M. F., “Testing reducibility of linear differential operators: a group-theoretic perspective”, Appl. Algebra Engrg. Comm. Comput., 7 (1996), 77–104 | DOI | MR | Zbl

[21] van der Put M., Singer M. F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, 328, Springer-Verlag, Berlin, 2003 | DOI | MR | Zbl

[22] Weil J.-A., “First integrals and Darboux polynomials of homogeneous linear differential systems”, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (Paris, 1995), Lecture Notes in Comput. Sci., 948, Springer, Berlin, 1995, 469–484 | DOI | MR | Zbl