@article{SIGMA_2015_11_a91,
author = {David Bl\'azquez-Sanz and Juan J. Morales-Ruiz and Jacques-Arthur Weil},
title = {Differential {Galois} {Theory} and {Lie} {Symmetries}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a91/}
}
TY - JOUR AU - David Blázquez-Sanz AU - Juan J. Morales-Ruiz AU - Jacques-Arthur Weil TI - Differential Galois Theory and Lie Symmetries JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a91/ LA - en ID - SIGMA_2015_11_a91 ER -
David Blázquez-Sanz; Juan J. Morales-Ruiz; Jacques-Arthur Weil. Differential Galois Theory and Lie Symmetries. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a91/
[1] Athorne C., “Symmetries of linear ordinary differential equations”, J. Phys. A: Math. Gen., 30 (1997), 4639–4649 | DOI | MR | Zbl
[2] Ayoul M., Zung N. T., “Galoisian obstructions to non-Hamiltonian integrability”, C. R. Math. Acad. Sci. Paris, 348 (2010), 1323–1326, arXiv: 0901.4586 | DOI | MR | Zbl
[3] Barkatou M. A., “Factoring systems of linear functional equations using eigenrings”, Computer Algebra 2006, World Sci. Publ., Hackensack, NJ, 2007, 22–42 | DOI | MR
[4] Blázquez-Sanz D., Morales-Ruiz J. J., “Differential Galois theory of algebraic Lie–Vessiot systems”, Differential Algebra, Complex Analysis and Orthogonal Polynomials, Contemp. Math., 509, Amer. Math. Soc., Providence, RI, 2010, 1–58, arXiv: 0901.4480 | DOI | MR
[5] Blázquez-Sanz D., Morales-Ruiz J. J., “Lie's reduction method and differential Galois theory in the complex analytic context”, Discrete Contin. Dyn. Syst., 32 (2012), 353–379, arXiv: 0901.4479 | DOI | MR
[6] Bogoyavlenskij O. I., “A concept of integrability of dynamical systems”, C. R. Math. Rep. Acad. Sci. Canada, 18 (1996), 163–168 | MR | Zbl
[7] Bogoyavlenskij O. I., “Hidden structure of symmetries”, Comm. Math. Phys., 254 (2005), 479–488 | DOI | MR | Zbl
[8] Crespo T., Hajto Z., Algebraic groups and differential Galois theory, Graduate Studies in Mathematics, 122, Amer. Math. Soc., Providence, RI, 2011 | DOI | MR | Zbl
[9] Jensen C. V., “Linear ODEs and ${\mathcal D}$-modules, solving and decomposing equations using symmetry methods”, Lobachevskii J. Math., 17 (2005), 149–212 | MR
[10] Katz N. M., “A conjecture in the arithmetic theory of differential equations”, Bull. Soc. Math. France, 110 (1982), 203–239 | MR | Zbl
[11] Kushner A., Lychagin V., Rubtsov V., Contact geometry and nonlinear differential equations, Encyclopedia of Mathematics and its Applications, 101, Cambridge University Press, Cambridge, 2007 | MR | Zbl
[12] Malgrange B., “On nonlinear differential Galois theory”, Chinese Ann. Math. Ser. B, 23 (2002), 219–226 | DOI | MR | Zbl
[13] Morales-Ruiz J. J., Differential Galois theory and non-integrability of Hamiltonian systems, Progress in Mathematics, 179, Birkhäuser Verlag, Basel, 1999 | DOI | MR | Zbl
[14] Morales-Ruiz J. J., “Picard–Vessiot theory and integrability”, J. Geom. Phys., 87 (2015), 314–343 | DOI | MR | Zbl
[15] Morales-Ruiz J. J., Ramis J.-P., “Galoisian obstructions to integrability of Hamiltonian systems”, Methods Appl. Anal., 8 (2001), 33–96 | MR
[16] Olver P. J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1986 | DOI | MR | Zbl
[17] Oudshoorn W. R., van der Put M., “Lie symmetries and differential Galois groups of linear equations”, Math. Comp., 71 (2002), 349–361 | DOI | MR | Zbl
[18] Seidenberg A., “Abstract differential algebra and the analytic case”, Proc. Amer. Math. Soc., 9 (1958), 159–164 | DOI | MR | Zbl
[19] Seidenberg A., “Abstract differential algebra and the analytic case, II”, Proc. Amer. Math. Soc., 23 (1969), 689–691 | DOI | MR | Zbl
[20] Singer M. F., “Testing reducibility of linear differential operators: a group-theoretic perspective”, Appl. Algebra Engrg. Comm. Comput., 7 (1996), 77–104 | DOI | MR | Zbl
[21] van der Put M., Singer M. F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, 328, Springer-Verlag, Berlin, 2003 | DOI | MR | Zbl
[22] Weil J.-A., “First integrals and Darboux polynomials of homogeneous linear differential systems”, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (Paris, 1995), Lecture Notes in Comput. Sci., 948, Springer, Berlin, 1995, 469–484 | DOI | MR | Zbl