Populations of Solutions to Cyclotomic Bethe Equations
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study solutions of the Bethe Ansatz equations for the cyclotomic Gaudin model of [Vicedo B., Young C.A.S., arXiv:1409.6937]. We give two interpretations of such solutions: as critical points of a cyclotomic master function, and as critical points with cyclotomic symmetry of a certain “extended” master function. In finite types, this yields a correspondence between the Bethe eigenvectors and eigenvalues of the cyclotomic Gaudin model and those of an “extended” non-cyclotomic Gaudin model. We proceed to define populations of solutions to the cyclotomic Bethe equations, in the sense of [Mukhin E., Varchenko A., Commun. Contemp. Math. 6 (2004), 111–163, math.QA/0209017], for diagram automorphisms of Kac–Moody Lie algebras. In the case of type A with the diagram automorphism, we associate to each population a vector space of quasi-polynomials with specified ramification conditions. This vector space is equipped with a ${\mathbb Z}_2$-gradation and a non-degenerate bilinear form which is (skew-)symmetric on the even (resp. odd) graded subspace. We show that the population of cyclotomic critical points is isomorphic to the variety of isotropic full flags in this space.
Keywords: Bethe equations; cyclotomic symmetry.
@article{SIGMA_2015_11_a90,
     author = {Alexander Varchenko and Charles A. S. Young},
     title = {Populations of {Solutions} to {Cyclotomic} {Bethe} {Equations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a90/}
}
TY  - JOUR
AU  - Alexander Varchenko
AU  - Charles A. S. Young
TI  - Populations of Solutions to Cyclotomic Bethe Equations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a90/
LA  - en
ID  - SIGMA_2015_11_a90
ER  - 
%0 Journal Article
%A Alexander Varchenko
%A Charles A. S. Young
%T Populations of Solutions to Cyclotomic Bethe Equations
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a90/
%G en
%F SIGMA_2015_11_a90
Alexander Varchenko; Charles A. S. Young. Populations of Solutions to Cyclotomic Bethe Equations. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a90/

[1] Babujian H. M., Flume R., “Off-shell Bethe ansatz equation for Gaudin magnets and solutions of Knizhnik–Zamolodchikov equations”, Modern Phys. Lett. A, 9 (1994), 2029–2039, arXiv: hep-th/9310110 | DOI | MR | Zbl

[2] Brochier A., “A Kohno–Drinfeld theorem for the monodromy of cyclotomic KZ connections”, Comm. Math. Phys., 311 (2012), 55–96, arXiv: 1011.4285 | DOI | MR | Zbl

[3] Crampé N., Young C. A. S., “Integrable models from twisted half-loop algebras”, J. Phys. A: Math. Theor., 40 (2007), 5491–5509, arXiv: math-ph/0609057 | DOI | MR | Zbl

[4] Enriquez B., “Quasi-reflection algebras and cyclotomic associators”, Selecta Math. (N.S.), 13 (2007), 391–463, arXiv: math.QA/0408035 | DOI | MR | Zbl

[5] Feigin B., Frenkel E., Reshetikhin N., “Gaudin model, Bethe ansatz and critical level”, Comm. Math. Phys., 166 (1994), 27–62, arXiv: hep-th/9402022 | DOI | MR | Zbl

[6] Frenkel E., “Gaudin model and opers”, Infinite dimensional algebras and quantum integrable systems, Progr. Math., 237, Birkhäuser, Basel, 2005, 1–58, arXiv: math.QA/0407524 | DOI | MR | Zbl

[7] Fuchs J., Schellekens B., Schweigert C., “From Dynkin diagram symmetries to fixed point structures”, Comm. Math. Phys., 180 (1996), 39–97, arXiv: hep-th/9506135 | DOI | MR | Zbl

[8] Gaudin M., “Diagonalisation d'une classe d'Hamiltoniens de spin”, J. Physique, 37 (1976), 1089–1098 | DOI | MR

[9] Gaudin M., La fonction d'onde de Bethe, Collection du Commissariat à l'Énergie Atomique, Série Scientifique, Masson, Paris, 1983 | MR | Zbl

[10] Kac V. G., “A sketch of Lie superalgebra theory”, Comm. Math. Phys., 53 (1977), 31–64 | DOI | MR | Zbl

[11] Kac V. G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | DOI | MR | Zbl

[12] Kagan D., Young C. A. S., Nuclear Phys. B, 745 (2006), Conformal sigma models on supercoset targets, arXiv: hep-th/0512250 | DOI | MR

[13] Mukhin E., Tarasov V., Varchenko A., “Bethe eigenvectors of higher transfer matrices”, J. Stat. Mech. Theory Exp., 2006 (2006), P08002, 44 pp., arXiv: math.QA/0605015 | DOI | MR

[14] Mukhin E., Varchenko A., “Remarks on critical points of phase functions and norms of Bethe vectors”, Arrangements (Tokyo, 1998), Adv. Stud. Pure Math., 27, Kinokuniya, Tokyo, 2000, 239–246, arXiv: math.RT/9810087 | MR | Zbl

[15] Mukhin E., Varchenko A., “Critical points of master functions and flag varieties”, Commun. Contemp. Math., 6 (2004), 111–163, arXiv: math.QA/0209017 | DOI | MR | Zbl

[16] Mukhin E., Varchenko A., “Miura opers and critical points of master functions”, Cent. Eur. J. Math., 3 (2005), 155–182, arXiv: math.QA/0312406 | DOI | MR | Zbl

[17] Mukhin E., Varchenko A., “Quasi-polynomials and the Bethe ansatz”, Groups, Homotopy and Configuration Spaces, Geom. Topol. Monogr., 13, Geom. Topol. Publ., Coventry, 2008, 385–420, arXiv: math.QA/0604048 | DOI | MR | Zbl

[18] Reshetikhin N., Varchenko A., “Quasiclassical asymptotics of solutions to the KZ equations”, Geometry, Topology, Physics, Conf. Proc., Lecture Notes Geom. Topology, 4, Int. Press, Cambridge, MA, 1995, 293–322, arXiv: hep-th/9402126 | MR

[19] Schechtman V. V., Varchenko A. N., “Arrangements of hyperplanes and Lie algebra homology”, Invent. Math., 106 (1991), 139–194 | DOI | MR

[20] Scherbak I., Varchenko A., “Critical points of functions, ${\mathfrak{sl}}_2$ representations, and Fuchsian differential equations with only univalued solutions”, Mosc. Math. J., 3 (2003), 621–645, arXiv: math.QA/0112269 | MR | Zbl

[21] Skrypnyk T., “Integrable quantum spin chains, non-skew symmetric $r$-matrices and quasigraded Lie algebras”, J. Geom. Phys., 57 (2006), 53–67 | DOI | MR | Zbl

[22] Skrypnyk T., “"$Z_2$-graded" Gaudin models and analytical Bethe ansatz”, Nuclear Phys. B, 870 (2013), 495–529 | DOI | MR | Zbl

[23] Varagnolo M., Vasserot E., “Cyclotomic double affine Hecke algebras and affine parabolic category ${\mathcal O}$”, Adv. Math., 225 (2010), 1523–1588, arXiv: 0810.5000 | DOI | MR | Zbl

[24] Varchenko A., “Bethe ansatz for arrangements of hyperplanes and the Gaudin model”, Mosc. Math. J., 6 (2006), 195–210, arXiv: math.QA/0408001 | MR | Zbl

[25] Varchenko A., Quantum integrable model of an arrangement of hyperplanes, 7 (2011), 032, 55 pp., arXiv: 1001.4553 | DOI | MR | Zbl

[26] Vicedo B., Young C. A. S., Cyclotomic Gaudin models: construction and Bethe ansatz, arXiv: 1409.6937

[27] Vicedo B., Young C. A. S., Vertex Lie algebras and cyclotomic coinvariants, arXiv: 1410.7664

[28] Young C. A. S., “Flat currents, ${\mathbb Z}_m$ gradings and coset space actions”, Phys. Lett. B, 632 (2006), 559–565 | DOI | MR | Zbl