@article{SIGMA_2015_11_a89,
author = {Andrew James Bruce and Katarzyna Grabowska and Janusz Grabowski},
title = {Graded {Bundles} in the {Category} of {Lie} {Groupoids}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a89/}
}
TY - JOUR AU - Andrew James Bruce AU - Katarzyna Grabowska AU - Janusz Grabowski TI - Graded Bundles in the Category of Lie Groupoids JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a89/ LA - en ID - SIGMA_2015_11_a89 ER -
Andrew James Bruce; Katarzyna Grabowska; Janusz Grabowski. Graded Bundles in the Category of Lie Groupoids. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a89/
[1] Brahic O., Cabrera A., Ortiz C., Obstructions to the integrability of $\mathcal{VB}$-algebroids, arXiv: 1403.1990
[2] Bruce A. J., Grabowska K., Grabowski J., “Higher order mechanics on graded bundles”, J. Phys. A: Math. Theor., 48 (2015), 205203, 32 pp., arXiv: 1412.2719 | DOI | MR | Zbl
[3] Bruce A. J., Grabowska K., Grabowski J., Linear duals of graded bundles and higher analogues of (Lie) algebroids, arXiv: 1409.0439
[4] Bruce A. J., Grabowska K., Grabowski J., Remarks on contact and Jacobi geometry, arXiv: 1507.05405
[5] Bursztyn H., Cabrera A., del Hoyo M., Vector bundles over Lie groupoids and algebroids, arXiv: 1410.5135
[6] Courant T. J., “Dirac manifolds”, Trans. Amer. Math. Soc., 319 (1990), 631–661 | DOI | MR | Zbl
[7] Crainic M., Fernandes R. L., “Integrability of Lie brackets”, Ann. of Math., 157 (2003), 575–620, arXiv: math.DG/0105033 | DOI | MR | Zbl
[8] Crainic M., Fernandes R. L., “Lectures on integrability of Lie brackets”, Lectures on Poisson geometry, Geom. Topol. Monogr., 17, Geom. Topol. Publ., Coventry, 2011, 1–107, arXiv: math.DG/0611259 | MR | Zbl
[9] Crainic M., Zhu C., “Integrability of Jacobi and Poisson structures”, Ann. Inst. Fourier (Grenoble), 57 (2007), 1181–1216, arXiv: math.DG/0403268 | DOI | MR | Zbl
[10] Dazord P., “Intégration d'algèbres de Lie locales et groupoïdes de contact”, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 959–964 | MR | Zbl
[11] Grabowski J., “Quasi-derivations and QD-algebroids”, Rep. Math. Phys., 52 (2003), 445–451, arXiv: math.DG/0301234 | DOI | MR | Zbl
[12] Grabowski J., “Graded contact manifolds and contact Courant algebroids”, J. Geom. Phys., 68 (2013), 27–58, arXiv: 1112.0759 | DOI | MR | Zbl
[13] Grabowski J., Grabowska K., Urbański P., “Geometry of Lagrangian and Hamiltonian formalisms in the dynamics of strings”, J. Geom. Mech., 6 (2014), 503–526, arXiv: 1401.6970 | DOI | MR | Zbl
[14] Grabowski J., Rotkiewicz M., “Higher vector bundles and multi-graded symplectic manifolds”, J. Geom. Phys., 59 (2009), 1285–1305, arXiv: math.DG/0702772 | DOI | MR | Zbl
[15] Grabowski J., Rotkiewicz M., “Graded bundles and homogeneity structures”, J. Geom. Phys., 62 (2012), 21–36, arXiv: 1102.0180 | DOI | MR | Zbl
[16] Gracia-Saz A., Mehta R. A., “Lie algebroid structures on double vector bundles and representation theory of Lie algebroids”, Adv. Math., 223 (2010), 1236–1275, arXiv: 0810.0066 | DOI | MR | Zbl
[17] Gracia-Saz A., Mehta R. A., $\mathcal{VB}$-groupoids and representations of Lie groupoids, arXiv: 1007.3658
[18] Kerbrat Y., Souici-Benhammadi Z., “Variétés de {J}acobi et groupoïdes de contact”, C. R. Acad. Sci. Paris Sér. I Math., 317 (1993), 81–86 | MR | Zbl
[19] Kirillov A. A., “Local Lie algebras”, Russ. Math. Surv., 31:4 (1976), 55–76 | DOI | MR
[20] Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 | DOI | MR | Zbl
[21] Kontsevich M., “Deformation quantization of Poisson manifolds”, Lett. Math. Phys., 66 (2003), 157–216, arXiv: q-alg/9709040 | DOI | MR | Zbl
[22] Kosmann-Schwarzbach Y., “Exact Gerstenhaber algebras and Lie bialgebroids”, Acta Appl. Math., 41 (1995), 153–165 | DOI | MR | Zbl
[23] Kosmann-Schwarzbach Y., “Derived brackets”, Lett. Math. Phys., 69 (2004), 61–87, arXiv: math.DG/0312524 | DOI | MR | Zbl
[24] Kouotchop Wamba P. M., Ntyam A., “Tangent lifts of higher order of multiplicative Dirac structures”, Arch. Math. (Brno), 49 (2013), 87–104 | DOI | MR | Zbl
[25] Liu Z.-J., Weinstein A., Xu P., “Manin triples for Lie bialgebroids”, J. Differential Geom., 45 (1997), 547–574, arXiv: dg-ga/9508013 | MR | Zbl
[26] Mackenzie K. C. H., Lie groupoids and Lie algebroids in differential geometry, London Mathematical Society Lecture Note Series, 124, Cambridge University Press, Cambridge, 1987 | DOI | MR | Zbl
[27] Mackenzie K. C. H., “On symplectic double groupoids and the duality of Poisson groupoids”, Internat. J. Math., 10 (1999), 435–456, arXiv: math.DG/9808005 | DOI | MR | Zbl
[28] Mackenzie K. C. H., General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl
[29] Mackenzie K. C. H., Xu P., “Lie bialgebroids and Poisson groupoids”, Duke Math. J., 73 (1994), 415–452 | DOI | MR | Zbl
[30] Mackenzie K. C. H., Xu P., “Integration of Lie bialgebroids”, Topology, 39 (2000), 445–467, arXiv: dg-ga/9712012 | DOI | MR | Zbl
[31] Marle C.-M., “On Jacobi manifolds and Jacobi bundles”, Symplectic Geometry, Groupoids, and Integrable Systems (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ., 20, Springer, New York, 1991, 227–246 | DOI | MR
[32] Martínez E., “Higher-order variational calculus on Lie algebroids”, J. Geom. Mech., 7 (2015), 81–108, arXiv: 1501.0652 | DOI | MR | Zbl
[33] Mehta R. A., Supergroupoids, double structures, and equivariant cohomology, Ph.D. Thesis, University of California, Berkeley, 2006, arXiv: math.DG/0605356 | MR
[34] Mehta R. A., “$Q$-groupoids and their cohomology”, Pacific J. Math., 242 (2009), 311–332, arXiv: math.DG/0611924 | DOI | MR | Zbl
[35] Mehta R. A., “Differential graded contact geometry and Jacobi structures”, Lett. Math. Phys., 103 (2013), 729–741, arXiv: 1111.4705 | DOI | MR | Zbl
[36] Moerdijk I., Mrčun J., “On integrability of infinitesimal actions”, Amer. J. Math., 124 (2002), 567–593, arXiv: math.DG/0006042 | DOI | MR | Zbl
[37] Pradines J., “Représentation des jets non holonomes par des morphismes vectoriels doubles soudés”, C. R. Acad. Sci. Paris Sér. A, 278 (1974), 1523–1526 | MR | Zbl
[38] Roytenberg D., “On the structure of graded symplectic supermanifolds and Courant algebroids”, Quantization, Poisson Brackets and Beyond (Manchester, 2001), Contemp. Math., 315, Amer. Math. Soc., Providence, RI, 2002, 169–185, arXiv: math.SG/0203110 | DOI | MR | Zbl
[39] Roytenberg D., “AKSZ-BV formalism and Courant algebroid-induced topological field theories”, Lett. Math. Phys., 79 (2007), 143–159, arXiv: hep-th/0608150 | DOI | MR | Zbl
[40] Schwarz A., “Semiclassical approximation in Batalin–Vilkovisky formalism”, Comm. Math. Phys., 158 (1993), 373–396, arXiv: hep-th/9210115 | DOI | MR
[41] Ševera P., “Some title containing the words “homotopy” and “symplectic”, e.g. this one”, Trav. Math., 16 (2005), 121–137, arXiv: math.SG/0105080 | MR
[42] Tseng H.-H., Zhu C., “Integrating Lie algebroids via stacks”, Compos. Math., 142 (2006), 251–270, arXiv: math.DF/0405003 | DOI | MR | Zbl
[43] Vaintrob A. Yu., “Lie algebroids and homological vector fields”, Russ. Math. Surv., 52 (1997), 428–429 | DOI | MR | Zbl
[44] Voronov Th. Th., “Graded manifolds and Drinfeld doubles for Lie bialgebroids”, Quantization, Poisson Brackets and Beyond (Manchester, 2001), Contemp. Math., 315, Amer. Math. Soc., Providence, RI, 2002, 131–168, arXiv: math.DG/0105237 | DOI | MR | Zbl
[45] Voronov Th. Th., “$Q$-manifolds and higher analogs of Lie algebroids”, XXIX Workshop on Geometric Methods in Physics, AIP Conf. Proc., 1307, Amer. Inst. Phys., Melville, NY, 2010, 191–202, arXiv: 1010.2503 | DOI | MR | Zbl
[46] Voronov Th. Th., “$Q$-manifolds and Mackenzie theory”, Comm. Math. Phys., 315 (2012), 279–310, arXiv: 1206.3622 | DOI | MR | Zbl