@article{SIGMA_2015_11_a88,
author = {Manuele Santoprete},
title = {On the {Relationship} between {Two} {Notions} of {Compatibility} {for~Bi-Hamiltonian} {Systems}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a88/}
}
TY - JOUR AU - Manuele Santoprete TI - On the Relationship between Two Notions of Compatibility for Bi-Hamiltonian Systems JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a88/ LA - en ID - SIGMA_2015_11_a88 ER -
Manuele Santoprete. On the Relationship between Two Notions of Compatibility for Bi-Hamiltonian Systems. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a88/
[1] Bieliavsky P., Cahen M., Gutt S., Rawnsley J., Schwachhöfer L., “Symplectic connections”, Int. J. Geom. Methods Mod. Phys., 3 (2006), 375–420, arXiv: math.SG/0511194 | DOI | MR | Zbl
[2] Bogoyavlenskij O. I., “Theory of tensor invariants of integrable Hamiltonian systems. I: Incompatible Poisson structures”, Comm. Math. Phys., 180 (1996), 529–586 | DOI | MR | Zbl
[3] Brouzet R., “Systèmes bihamiltoniens et complète intégrabilité en dimension $4$”, C. R. Acad. Sci. Paris Sér. I Math., 311 (1990), 895–898 | MR | Zbl
[4] Falqui G., Pedroni M., “Poisson pencils, algebraic integrability, and separation of variables”, Regul. Chaotic Dyn., 16 (2011), 223–244 | DOI | MR | Zbl
[5] Fassò F., Ratiu T., “Compatibility of symplectic structures adapted to noncommutatively integrable systems”, J. Geom. Phys., 27 (1998), 199–220 | DOI | MR | Zbl
[6] Fernandes R. L., “Completely integrable bi-Hamiltonian systems”, J. Dynam. Differential Equations, 6 (1994), 53–69 | DOI | MR | Zbl
[7] Forger M., Yepes S. Z., “Lagrangian distributions and connections in multisymplectic and polysymplectic geometry”, Differential Geom. Appl., 31 (2013), 775–807, arXiv: 1202.5054 | DOI | MR | Zbl
[8] Gel'fand I. M., Dorfman I. Ja., “Hamiltonian operators and algebraic structures related to them”, Funct. Anal. Appl., 13 (1979), 248–262 | DOI | MR
[9] Lee J. M., Introduction to smooth manifolds, Graduate Texts in Mathematics, 218, Springer-Verlag, New York, 2003 | DOI | MR
[10] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl
[11] Magri F., Casati P., Falqui G., Pedroni M., “Eight lectures on integrable systems”, Integrability of Nonlinear Systems, Lecture Notes in Phys., 638, eds. Y. Kosmann-Schwarzbach, K. M. Tamizhmani, B. Grammaticos, Springer, Berlin, 2004, 209–250 | DOI | MR
[12] Magri F., Morosi C., A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson–Nijenhuis manifolds, Quaderni del Dipartimento di Matematica, Università di Milano, 1984
[13] Olver P. J., “Canonical forms and integrability of bi-Hamiltonian systems”, Phys. Lett. A, 148 (1990), 177–187 | DOI | MR
[14] Tondo G., “Generalized Lenard chains and separation of variables”, Quad. Mat. Univ. Trieste, 573 (2006), 1–27
[15] Turiel F.-J., “Classification locale simultanée de deux formes symplectiques compatibles”, Manuscripta Math., 82 (1994), 349–362 | DOI | MR | Zbl