On the Relationship between Two Notions of Compatibility for Bi-Hamiltonian Systems
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Bi-Hamiltonian structures are of great importance in the theory of integrable Hamiltonian systems. The notion of compatibility of symplectic structures is a key aspect of bi-Hamiltonian systems. Because of this, a few different notions of compatibility have been introduced. In this paper we show that, under some additional assumptions, compatibility in the sense of Magri implies a notion of compatibility due to Fassò and Ratiu, that we dub bi-affine compatibility. We present two proofs of this fact. The first one uses the uniqueness of the connection parallelizing all the Hamiltonian vector fields tangent to the leaves of a Lagrangian foliation. The second proof uses Darboux–Nijenhuis coordinates and symplectic connections.
Keywords: bi-Hamiltonian systems; Lagrangian foliation; bott connection; symplectic connections.
@article{SIGMA_2015_11_a88,
     author = {Manuele Santoprete},
     title = {On the {Relationship} between {Two} {Notions} of {Compatibility} {for~Bi-Hamiltonian} {Systems}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a88/}
}
TY  - JOUR
AU  - Manuele Santoprete
TI  - On the Relationship between Two Notions of Compatibility for Bi-Hamiltonian Systems
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a88/
LA  - en
ID  - SIGMA_2015_11_a88
ER  - 
%0 Journal Article
%A Manuele Santoprete
%T On the Relationship between Two Notions of Compatibility for Bi-Hamiltonian Systems
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a88/
%G en
%F SIGMA_2015_11_a88
Manuele Santoprete. On the Relationship between Two Notions of Compatibility for Bi-Hamiltonian Systems. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a88/

[1] Bieliavsky P., Cahen M., Gutt S., Rawnsley J., Schwachhöfer L., “Symplectic connections”, Int. J. Geom. Methods Mod. Phys., 3 (2006), 375–420, arXiv: math.SG/0511194 | DOI | MR | Zbl

[2] Bogoyavlenskij O. I., “Theory of tensor invariants of integrable Hamiltonian systems. I: Incompatible Poisson structures”, Comm. Math. Phys., 180 (1996), 529–586 | DOI | MR | Zbl

[3] Brouzet R., “Systèmes bihamiltoniens et complète intégrabilité en dimension $4$”, C. R. Acad. Sci. Paris Sér. I Math., 311 (1990), 895–898 | MR | Zbl

[4] Falqui G., Pedroni M., “Poisson pencils, algebraic integrability, and separation of variables”, Regul. Chaotic Dyn., 16 (2011), 223–244 | DOI | MR | Zbl

[5] Fassò F., Ratiu T., “Compatibility of symplectic structures adapted to noncommutatively integrable systems”, J. Geom. Phys., 27 (1998), 199–220 | DOI | MR | Zbl

[6] Fernandes R. L., “Completely integrable bi-Hamiltonian systems”, J. Dynam. Differential Equations, 6 (1994), 53–69 | DOI | MR | Zbl

[7] Forger M., Yepes S. Z., “Lagrangian distributions and connections in multisymplectic and polysymplectic geometry”, Differential Geom. Appl., 31 (2013), 775–807, arXiv: 1202.5054 | DOI | MR | Zbl

[8] Gel'fand I. M., Dorfman I. Ja., “Hamiltonian operators and algebraic structures related to them”, Funct. Anal. Appl., 13 (1979), 248–262 | DOI | MR

[9] Lee J. M., Introduction to smooth manifolds, Graduate Texts in Mathematics, 218, Springer-Verlag, New York, 2003 | DOI | MR

[10] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl

[11] Magri F., Casati P., Falqui G., Pedroni M., “Eight lectures on integrable systems”, Integrability of Nonlinear Systems, Lecture Notes in Phys., 638, eds. Y. Kosmann-Schwarzbach, K. M. Tamizhmani, B. Grammaticos, Springer, Berlin, 2004, 209–250 | DOI | MR

[12] Magri F., Morosi C., A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson–Nijenhuis manifolds, Quaderni del Dipartimento di Matematica, Università di Milano, 1984

[13] Olver P. J., “Canonical forms and integrability of bi-Hamiltonian systems”, Phys. Lett. A, 148 (1990), 177–187 | DOI | MR

[14] Tondo G., “Generalized Lenard chains and separation of variables”, Quad. Mat. Univ. Trieste, 573 (2006), 1–27

[15] Turiel F.-J., “Classification locale simultanée de deux formes symplectiques compatibles”, Manuscripta Math., 82 (1994), 349–362 | DOI | MR | Zbl