@article{SIGMA_2015_11_a87,
author = {Yuxuan Chen and Ernie G. Kalnins and Qiushi Li and Willard Miller Jr.},
title = {Examples of {Complete} {Solvability} of {2D} {Classical} {Superintegrable} {Systems}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a87/}
}
TY - JOUR AU - Yuxuan Chen AU - Ernie G. Kalnins AU - Qiushi Li AU - Willard Miller Jr. TI - Examples of Complete Solvability of 2D Classical Superintegrable Systems JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a87/ LA - en ID - SIGMA_2015_11_a87 ER -
%0 Journal Article %A Yuxuan Chen %A Ernie G. Kalnins %A Qiushi Li %A Willard Miller Jr. %T Examples of Complete Solvability of 2D Classical Superintegrable Systems %J Symmetry, integrability and geometry: methods and applications %D 2015 %V 11 %U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a87/ %G en %F SIGMA_2015_11_a87
Yuxuan Chen; Ernie G. Kalnins; Qiushi Li; Willard Miller Jr. Examples of Complete Solvability of 2D Classical Superintegrable Systems. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a87/
[1] Arnold V. I., Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 60, Springer-Verlag, New York–Heidelberg, 1978 | DOI | MR | Zbl
[2] Ballesteros Á., Enciso A., Herranz F. J., Ragnisco O., Riglioni D., “Quantum mechanics on spaces of nonconstant curvature: the oscillator problem and superintegrability”, Ann. Physics, 326 (2011), 2053–2073, arXiv: 1102.5494 | DOI | MR | Zbl
[3] Ballesteros Á., Enciso A., Herranz F. J., Ragnisco O., Riglioni D., “Superintegrable oscillator and Kepler systems on spaces of nonconstant curvature via the Stäckel transform”, SIGMA, 7 (2011), 048, 15 pp., arXiv: 1103.4554 | DOI | MR | Zbl
[4] Ballesteros Á., Herranz F. J., Musso F., “The anisotropic oscillator on the 2D sphere and the hyperbolic plane”, Nonlinearity, 26 (2013), 971–990, arXiv: 1207.0071 | DOI | MR | Zbl
[5] Capel J. J., Kress J. M., “Invariant classification of second-order conformally flat superintegrable systems”, J. Phys. A: Math. Theor., 47 (2014), 495202, 33 pp., arXiv: 1406.3136 | DOI | MR | Zbl
[6] Chanu C., Degiovanni L., Rastelli G., “Superintegrable three-body systems on the line”, J. Math. Phys., 49 (2008), 112901, 10 pp., arXiv: 0802.1353 | DOI | MR | Zbl
[7] Curtis H. D., Orbital mechanics for engineering students, 3rd ed., Elsevier, 2013
[8] Daskaloyannis C., “Quadratic Poisson algebras of two-dimensional classical superintegrable systems and quadratic associative algebras of quantum superintegrable systems”, J. Math. Phys., 42 (2001), 1100–1119, arXiv: math-ph/0003017 | DOI | MR | Zbl
[9] Evans N. W., “Superintegrability in classical mechanics”, Phys. Rev. A, 41 (1990), 5666–5676 | DOI | MR
[10] Evans N. W., Verrier P. E., “Superintegrability of the caged anisotropic oscillator”, J. Math. Phys., 49 (2008), 092902, 10 pp., arXiv: 0808.2146 | DOI | MR | Zbl
[11] Fordy A. P., “Quantum super-integrable systems as exactly solvable models”, SIGMA, 3 (2007), 025, 10 pp., arXiv: math-ph/0702048 | DOI | MR | Zbl
[12] Goldstein H., Poole C. P., Safko J. L., Classical mechanics, Addison-Wesley Press, Inc., Boston, 2001 | MR
[13] Granovskii Y. I., Zhedanov A. S., Lutsenko I. M., “Quadratic algebras and dynamics in curved space. II: The Kepler problem”, Theoret. and Math. Phys., 91 (1992), 604–612 | DOI | MR
[14] Higgs P. W., “Dynamical symmetries in a spherical geometry, I”, J. Phys. A: Math. Gen., 12 (1979), 309–323 | DOI | MR | Zbl
[15] Inönü E., Wigner E. P., “On the contraction of groups and their representations”, Proc. Nat. Acad. Sci. USA, 39 (1953), 510–524 | DOI | MR | Zbl
[16] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Second order superintegrable systems in conformally flat spaces. I: Two-dimensional classical structure theory”, J. Math. Phys., 46 (2005), 053509, 28 pp. | DOI | MR | Zbl
[17] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Second order superintegrable systems in conformally flat spaces. II: The classical two-dimensional Stäckel transform”, J. Math. Phys., 46 (2005), 053510, 15 pp. | DOI | MR | Zbl
[18] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Second order superintegrable systems in conformally flat spaces. III: Three-dimensional classical structure theory”, J. Math. Phys., 46 (2005), 103507, 28 pp. | DOI | MR | Zbl
[19] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Second-order superintegrable systems in conformally flat spaces. V: Two- and three-dimensional quantum systems”, J. Math. Phys., 47 (2006), 093501, 25 pp. | DOI | MR | Zbl
[20] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Families of classical subgroup separable superintegrable systems”, J. Phys. A: Math. Theor., 43 (2010), 092001, 8 pp., arXiv: 0912.3158 | DOI | MR | Zbl
[21] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Tools for verifying classical and quantum superintegrability”, SIGMA, 6 (2010), 066, 23 pp., arXiv: 1006.0864 | DOI | MR | Zbl
[22] Kalnins E. G., Kress J. M., Miller W. (Jr.), Winternitz P., “Superintegrable systems in Darboux spaces”, J. Math. Phys., 44 (2003), 5811–5848, arXiv: math-ph/0307039 | DOI | MR | Zbl
[23] Kalnins E. G., Kress J. M., Pogosyan G. S., Miller W. (Jr.), “Completeness of superintegrability in two-dimensional constant-curvature spaces”, J. Phys. A: Math. Gen., 34 (2001), 4705–4720, arXiv: math-ph/0102006 | DOI | MR | Zbl
[24] Kalnins E. G., Miller W. (Jr.), Post S., “Contractions of 2D 2nd order quantum superintegrable systems and the Askey scheme for hypergeometric orthogonal polynomials”, SIGMA, 9 (2013), 057, 28 pp., arXiv: 1212.4766 | DOI | MR | Zbl
[25] Koenigs G.: Darboux G., Lecons sur la théorie générale des surfaces et les applications geométriques du calcul infinitesimal, v. 4, Chelsea, New York, 1972, Sur les géodésiques à intégrales quadratiques
[26] Kuru S., Negro J., “‘Spectrum generating algebras’ of classical systems: the Kepler–Coulomb potential”, J. Phys. Conf. Ser., 343 (2012), 012063, 5 pp. | DOI
[27] Latini D., Ragnisco O., “The classical Taub–Nut system: factorization, spectrum generating algebra and solution to the equations of motion”, J. Phys. A: Math. Theor., 48 (2015), 175201, 13 pp., arXiv: 1411.3571 | DOI | MR | Zbl
[28] Létourneau P., Vinet L., “Superintegrable systems: polynomial algebras and quasi-exactly solvable Hamiltonians”, Ann. Physics, 243 (1995), 144–168 | DOI | MR
[29] Maciejewski A. J., Przybylska M., Yoshida H., “Necessary conditions for classical super-integrability of a certain family of potentials in constant curvature spaces”, J. Phys. A: Math. Theor., 43 (2010), 382001, 15 pp., arXiv: 1004.3854 | DOI | MR | Zbl
[30] Makarov A. A., Smorodinsky J. A., Valiev K., Winternitz P., “A systematic search for nonrelativistic systems with dynamical symmetries. Part I: The integrals of motion”, Nuovo Cimento, 52 (1967), 1061–1084 | DOI
[31] Marquette I., “Classical ladder operators, polynomial Poisson algebras, and classification of superintegrable systems”, J. Math. Phys., 53 (2012), 012901, 12 pp., arXiv: 1109.4471 | DOI | MR | Zbl
[32] Mayrand M., Vinet L., “Hidden symmetries of two-dimensional systems with local degeneracies”, J. Math. Phys., 33 (1992), 203–212 | DOI | MR
[33] Miller W. (Jr.), Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46 (2013), 423001, 97 pp., arXiv: 1309.2694 | DOI | MR | Zbl
[34] Nehorošev N. N., “Action-angle variables, and their generalizations”, Trans. Moscow Math. Soc., 26 (1972), 180–198 | MR
[35] Olver F. W. J., Lozier D. W., Boisvert R. F., Clark C. W. (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute ofStandards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010 | MR
[36] Post S., Winternitz P., “A nonseparable quantum superintegrable system in 2D real Euclidean space”, J. Phys. A: Math. Theor., 44 (2011), 162001, 8 pp., arXiv: 1101.5405 | DOI | MR | Zbl
[37] Rodríguez M. A., Tempesta P., Winternitz P., “Symmetry reduction and superintegrable Hamiltonian systems”, J. Phys. Conf. Ser., 175 (2009), 012013, 8 pp. | DOI
[38] Tempesta P., Turbiner A. V., Winternitz P., “Exact solvability of superintegrable systems”, J. Math. Phys., 42 (2001), 4248–4257, arXiv: hep-th/0011209 | DOI | MR | Zbl
[39] Tempesta P., Winternitz P., Harnad J., Miller W., Pogosyan G., Rodriguez M. (eds.), Superintegrability in classical and quantum systems, CRM Proceedings and Lecture Notes, 37, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl
[40] Tremblay F., Turbiner A. V., Winternitz P., “An infinite family of solvable and integrable quantum systems on a plane”, J. Phys. A: Math. Theor., 42 (2009), 242001, 10 pp., arXiv: 0904.0738 | DOI | MR | Zbl
[41] Tremblay F., Turbiner A. V., Winternitz P., “Periodic orbits for an infinite family of classical superintegrable systems”, J. Phys. A: Math. Theor., 43 (2010), 015202, 14 pp., arXiv: 0910.0299 | DOI | MR | Zbl
[42] Tsiganov A. V., “On maximally superintegrable systems”, Regul. Chaotic Dyn., 13 (2008), 178–190, arXiv: 0711.2225 | DOI | MR | Zbl