BiHom-Associative Algebras, BiHom-Lie Algebras and BiHom-Bialgebras
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A BiHom-associative algebra is a (nonassociative) algebra $A$ endowed with two commuting multiplicative linear maps $\alpha , \beta\colon A\rightarrow A$ such that $\alpha (a)(bc)=(ab)\beta (c)$, for all $a, b, c\in A$. This concept arose in the study of algebras in so-called group Hom-categories. In this paper, we introduce as well BiHom-Lie algebras (also by using the categorical approach) and BiHom-bialgebras. We discuss these new structures by presenting some basic properties and constructions (representations, twisted tensor products, smash products etc).
Keywords: BiHom-associative algebra; BiHom-Lie algebra; BiHom-bialgebra; representation; twisting; smash product.
@article{SIGMA_2015_11_a85,
     author = {Giacomo Graziani and Abdenacer Makhlouf and Claudia Menini and Florin Panaite},
     title = {BiHom-Associative {Algebras,} {BiHom-Lie} {Algebras} and {BiHom-Bialgebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a85/}
}
TY  - JOUR
AU  - Giacomo Graziani
AU  - Abdenacer Makhlouf
AU  - Claudia Menini
AU  - Florin Panaite
TI  - BiHom-Associative Algebras, BiHom-Lie Algebras and BiHom-Bialgebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a85/
LA  - en
ID  - SIGMA_2015_11_a85
ER  - 
%0 Journal Article
%A Giacomo Graziani
%A Abdenacer Makhlouf
%A Claudia Menini
%A Florin Panaite
%T BiHom-Associative Algebras, BiHom-Lie Algebras and BiHom-Bialgebras
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a85/
%G en
%F SIGMA_2015_11_a85
Giacomo Graziani; Abdenacer Makhlouf; Claudia Menini; Florin Panaite. BiHom-Associative Algebras, BiHom-Lie Algebras and BiHom-Bialgebras. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a85/

[1] Aizawa N., Sato H., “$q$-deformation of the Virasoro algebra with central extension”, Phys. Lett. B, 256 (1991), 185–190 | DOI | MR

[2] Aragón Periñán M. J., Calderón Martín A. J., On graded matrix Hom-algebras, 24 (2012), 45–65 | DOI | MR | Zbl

[3] Aragón Periñán M. J., Calderón Martín A. J., “Split regular Hom-Lie algebras”, J. Lie Theory, 25 (2015), 875–888 | MR | Zbl

[4] Ardizzoni A., Bulacu D., Menini C., “Quasi-bialgebra structures and torsion-free abelian groups”, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 56 (2013), 247–265, arXiv: 1302.2453 | MR | Zbl

[5] Ardizzoni A., Menini C., Milnor–Moore categories and monadic decomposition, arXiv: 1401.2037

[6] Bakayoko I., “$L$-modules, $L$-comodules and Hom–Lie quasi-bialgebras”, Afr. Diaspora J. Math., 17 (2014), 49–64 | MR | Zbl

[7] Benayadi S., Makhlouf A., “Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms”, J. Geom. Phys., 76 (2014), 38–60, arXiv: 1009.4226 | DOI | MR | Zbl

[8] Caenepeel S., Goyvaerts I., “Monoidal Hom–Hopf algebras”, Comm. Algebra, 39 (2011), 2216–2240, arXiv: 0907.0187 | DOI | MR | Zbl

[9] Cap A., Schichl H., Vanžura J., “On twisted tensor products of algebras”, Comm. Algebra, 23 (1995), 4701–4735 | DOI | MR | Zbl

[10] Chaichian M., Kulish P., Lukierski J., “$q$-deformed Jacobi identity, $q$-oscillators and $q$-deformed infinite-dimensional algebras”, Phys. Lett. B, 237 (1990), 401–406 | DOI | MR

[11] Chen Y., Wang Z., Zhang L., “Integrals for monoidal Hom–Hopf algebras and their applications”, J. Math. Phys., 54 (2013), 073515, 22 pp. | DOI | MR | Zbl

[12] Curtright T. L., Zachos C. K., “Deforming maps for quantum algebras”, Phys. Lett. B, 243 (1990), 237–244 | DOI | MR

[13] Goyvaerts I., Vercruysse J., “Lie monads and dualities”, J. Algebra, 414 (2014), 120–158, arXiv: 1302.6869 | DOI | MR | Zbl

[14] Graziani G., Group Hom-categories, Thesis, University of Ferrara, Italy, 2013

[15] Hartwig J. T., Larsson D., Silvestrov S. D., “Deformations of Lie algebras using $\sigma$-derivations”, J. Algebra, 295 (2006), 314–361, arXiv: math.QA/0408064 | DOI | MR | Zbl

[16] Hassanzadeh M., Shapiro I., Sütlü S., “Cyclic homology for Hom-associative algebras”, J. Geom. Phys., 98 (2015), 40–56, arXiv: 1504.03019 | DOI | MR

[17] Kassel C., Quantum groups, Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995 | DOI | MR | Zbl

[18] Larsson D., Silvestrov S., “Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities”, J. Algebra, 288 (2005), 321–344, arXiv: math.RA/0408061 | DOI | MR | Zbl

[19] Liu K. Q., “Characterizations of the quantum Witt algebra”, Lett. Math. Phys., 24 (1992), 257–265 | DOI | MR | Zbl

[20] Liu L., Shen B., “Radford's biproducts and Yetter–Drinfeld modules for monoidal Hom–Hopf algebras”, J. Math. Phys., 55 (2014), 031701, 16 pp. | DOI | MR | Zbl

[21] López Peña J., Panaite F., Van Oystaeyen F., “General twisting of algebras”, Adv. Math., 212 (2007), 315–337, arXiv: math.QA/0605086 | DOI | MR | Zbl

[22] Makhlouf A., Panaite F., “Yetter–Drinfeld modules for Hom-bialgebras”, J. Math. Phys., 55 (2014), 013501, 17 pp., arXiv: 1310.8323 | DOI | MR | Zbl

[23] Makhlouf A., Panaite F., “Twisting operators, twisted tensor products and smash products for Hom-associative algebras”, Glasg. Math. J. (to appear) , arXiv: 1402.1893 | DOI

[24] Makhlouf A., Silvestrov S., “Hom-algebra structures”, J. Gen. Lie Theory Appl., 2 (2008), 51–64, arXiv: math.RA/0609501 | DOI | MR | Zbl

[25] Makhlouf A., Silvestrov S., “Hom–Lie admissible Hom-coalgebras and Hom–Hopf algebras”, Generalized Lie Theory in Mathematics, Physics and Beyond, eds. S. Silvestrov, E. Paal, V. Abramov, A. Stolin, Springer-Verlag, Berlin, 2009, 189–206, arXiv: 0709.2413 | DOI | MR | Zbl

[26] Makhlouf A., Silvestrov S., “Hom-algebras and Hom-coalgebras”, J. Algebra Appl., 9 (2010), 553–589, arXiv: 0811.0400 | DOI | MR | Zbl

[27] Sheng Y., “Representations of Hom–Lie algebras”, Algebr. Represent. Theory, 15 (2012), 1081–1098, arXiv: 1005.0140 | DOI | MR | Zbl

[28] Van Daele A., Van Keer S., “The Yang–Baxter and pentagon equation”, Compositio Math., 91 (1994), 201–221 | MR | Zbl

[29] Yau D., “Enveloping algebras of Hom–Lie algebras”, J. Gen. Lie Theory Appl., 2 (2008), 95–108, arXiv: 0709.0849 | DOI | MR | Zbl

[30] Yau D., “Hom-bialgebras and comodule Hom-algebras”, Int. Electron. J. Algebra, 8 (2010), 45–64, arXiv: 0810.4866 | MR | Zbl

[31] Yau D., Module Hom-algebras, arXiv: 0812.4695

[32] Yau D., Hom-quantum groups. III: Representations and module Hom-algebras, arXiv: 0911.5402