@article{SIGMA_2015_11_a84,
author = {Andrey V. Tsiganov},
title = {On {Integrable} {Perturbations} of {Some} {Nonholonomic} {Systems}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a84/}
}
Andrey V. Tsiganov. On Integrable Perturbations of Some Nonholonomic Systems. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a84/
[1] Bates L., Cushman R. What is a completely integrable nonholonomic dynamical system?, Rep. Math. Phys., 44 (1999), 29–35 | DOI | MR | Zbl
[2] Benenti S., “Orthogonal separable dynamical systems”, Differential Geometry and its Applications (Opava, 1992), Math. Publ., 1, eds. O. Kowalsky, D. Krupka, Silesian University Opava, Opava, 1993, 163–184 | MR | Zbl
[3] Benenti S., “Geometrical aspects of the dynamics of non-holonomic systems”, Rend. Sem. Mat. Univ. Politec. Torino, 54 (1996), 203–212 | MR | Zbl
[4] Benenti S., “Intrinsic characterization of the variable separation in the Hamilton–Jacobi equation”, J. Math. Phys., 38 (1997), 6578–6602 | DOI | MR | Zbl
[5] Benenti S., “A ‘user-friendly’ approach to the dynamical equations of non-holonomic systems”, SIGMA, 3 (2007), 036, 33 pp., arXiv: math.DS/0703043 | DOI | MR | Zbl
[6] Benenti S., “A general method for writing the dynamical equations of nonholonomic systems with ideal constraints”, Regul. Chaotic Dyn., 13 (2008), 283–315 | DOI | MR | Zbl
[7] Benenti S., “The non-holonomic double pendulum: an example of non-linear non-holonomic system”, Regul. Chaotic Dyn., 16 (2011), 417–442 | DOI | MR | Zbl
[8] Benenti S., Chanu C., Rastelli G., “Variable-separation theory for the null Hamilton–Jacobi equation”, J. Math. Phys., 46 (2005), 042901, 29 pp. | DOI | MR | Zbl
[9] Bertrand J. M., “Mémoire sur quelques-unes des forms les plus simples que puissent présenter les intégrales des équations différentielles du mouvement d'un point matériel”, J. Math. Pures Appl., 2 (1857), 113–140
[10] Birkhoff G. D., Dynamical systems, American Mathematical Society Colloquium Publications, 9, Amer. Math. Soc., Providence, R.I., 1966 | MR
[11] Bloch A. M., Nonholonomic mechanics and control, Interdisciplinary Applied Mathematics, 24, Springer-Verlag, New York, 2003 | DOI | MR | Zbl
[12] Bogoyavlenskiĭ O. I., “Integrable cases of rigid-body dynamics and integrable systems on spheres $S^n$”, Izv. Akad. Nauk SSSR Ser. Mat., 49 (1985), 899–915 | MR
[13] Borisov A. V., Kilin A. A., Mamaev I. S., “The problem of drift and recurrence for the rolling Chaplygin ball”, Regul. Chaotic Dyn., 18 (2013), 832–859 | DOI | MR | Zbl
[14] Borisov A. V., Mamaev I. S., Bizyaev I. A., “The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere”, Regul. Chaotic Dyn., 18 (2013), 277–328 | DOI | MR | Zbl
[15] Borisov A. V., Mamaev I. S., Tsiganov A. V., “Non-holonomic dynamics and Poisson geometry”, Russ. Math. Surv., 69 (2014), 481–538 | DOI | Zbl
[16] Chaplygin S. A., “On a ball's rolling on a horizontal plane”, Regul. Chaotic Dyn., 7 (2002), 131–148 | DOI | MR | Zbl
[17] Darboux G., “Sur un probléme de mécanique”, Arch. Néerl., 6 (1901), 371–376 | Zbl
[18] de M. Rios P., Koiller J., “Non-holonomic systems with symmetry allowing a conformally symplectic reduction”, New Advances in Celestial Mechanics and Hamiltonian Systems, Kluwer/Plenum, New York, 2004, 239–252, arXiv: math-ph/0203013 | DOI | MR
[19] Dragović V., “The Appell hypergeometric functions and classical separable mechanical systems”, J. Phys. A: Math. Gen., 35 (2002), 2213–2221, arXiv: math-ph/0008009 | DOI | MR | Zbl
[20] Dragović V., Gajić B., Jovanović B., “Generalizations of classical integrable nonholonomic rigid body systems”, J. Phys. A: Math. Gen., 31 (1998), 9861–9869 | DOI | MR | Zbl
[21] Eisenhart L. P., “Separable systems of Stackel”, Ann. of Math., 35 (1934), 284–305 | DOI | MR
[22] Fedorov Y. N., Jovanović B., “Nonholonomic LR systems as generalized Chaplygin systems with an invariant measure and flows on homogeneous spaces”, J. Nonlinear Sci., 14 (2004), 341–381, arXiv: math-ph/0307016 | DOI | MR | Zbl
[23] Guha P., The role of the Jacobi last multiplier in nonholonomic systems and almost symplectic structure, Preprint IHES/M/13/17, 2013
[24] Jovanović B., “Integrable perturbations of billiards on constant curvature surfaces”, Phys. Lett. A, 231 (1997), 353–358 | DOI | MR | Zbl
[25] Kalnins E. G., Miller W. (Jr.), “Separation of variables on $n$-dimensional Riemannian manifolds. I: The $n$-sphere $S^n$ and Euclidean $n$-space $\mathbf{R}^n$”, J. Math. Phys., 27 (1986), 1721–1736 | DOI | MR | Zbl
[26] Kozlov V. V., Methods of qualitative analysis in the dynamics of a rigid body, Moscow State University, M., 1980 | MR | Zbl
[27] Kozlov V. V., “On the integration theory of equations of nonholonomic mechanics”, Regul. Chaotic Dyn., 7 (2002), 161–176, arXiv: nlin.SI/0503027 | DOI | MR | Zbl
[28] Kozlov V. V., “The Euler–Jacobi–Lie integrability theorem”, Regul. Chaotic Dyn., 18 (2013), 329–343 | DOI | MR | Zbl
[29] Llibre J., Ramírez R., Sadovskaia N., “Integrability of the constrained rigid body”, Nonlinear Dynam., 73 (2013), 2273–2290 | DOI | MR | Zbl
[30] Molina-Becerra M., Galán-Vioque J., Freire E., “Dynamics and bifurcations of a nonholonomic Heisenberg system”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 22 (2012), 1250040, 14 pp. | DOI | MR | Zbl
[31] Rosochatius E., Über die Bewegung eines Punktes, inaugural Dissertation, Univ. Göttingen, Berlin, 1877
[32] Smirnov R. G., “On the classical Bertrand–Darboux problem”, J. Math. Sci., 151 (2008), 3230–3244, arXiv: math-ph/0604038 | DOI | MR | Zbl
[33] Suslov G. K., Theoretical mechanics, Gostekhizdat, M., 1946
[34] Tsiganov A., “Integrable Euler top and nonholonomic Chaplygin ball”, J. Geom. Mech., 3 (2011), 337–362, arXiv: 1002.1123 | DOI | MR | Zbl
[35] Tsiganov A. V., “On the Poisson structures for the nonholonomic Chaplygin and Veselova problems”, Regul. Chaotic Dyn., 17 (2012), 439–450 | DOI | MR | Zbl
[36] Tsiganov A. V., “One family of conformally Hamiltonian systems”, Theoret. and Math. Phys., 173 (2012), 1481–1497, arXiv: 1206.5061 | DOI | MR | Zbl
[37] Tsiganov A. V., “On the Lie integrability theorem for the Chaplygin ball”, Regul. Chaotic Dyn., 19 (2014), 185–197, arXiv: 1312.1055 | DOI | MR | Zbl
[38] Tsiganov A. V., “Killing tensors with nonvanishing Haantjes torsion and integrable systems”, Regul. Chaotic Dyn., 20 (2015), 463–475 | DOI | MR
[39] Valent G., Ben Yahia H., “Neumann-like integrable models”, Phys. Lett. A, 360 (2007), 435–438, arXiv: math-ph/0512027 | DOI | MR
[40] Veselova L. E., “New cases of the integrability of the equations of motion of a rigid body in the presence of a nonholonomic constraint”, Geometry, Differential Equations and Mechanics (Moscow, 1985), Moscow State University, M., 1986, 64–68 | MR
[41] Wojciechowski S., “Integrable one-particle potentials related to the Neumann system and the Jacobi problem of geodesic motion on an ellipsoid”, Phys. Lett. A, 107 (1985), 106–111 | DOI | MR | Zbl