@article{SIGMA_2015_11_a83,
author = {Michael F. Barnsley and Andrew Vince},
title = {Fast {Basins} and {Branched} {Fractal} {Manifolds} of {Attractors} of {Iterated} {Function} {Systems}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a83/}
}
TY - JOUR AU - Michael F. Barnsley AU - Andrew Vince TI - Fast Basins and Branched Fractal Manifolds of Attractors of Iterated Function Systems JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a83/ LA - en ID - SIGMA_2015_11_a83 ER -
%0 Journal Article %A Michael F. Barnsley %A Andrew Vince %T Fast Basins and Branched Fractal Manifolds of Attractors of Iterated Function Systems %J Symmetry, integrability and geometry: methods and applications %D 2015 %V 11 %U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a83/ %G en %F SIGMA_2015_11_a83
Michael F. Barnsley; Andrew Vince. Fast Basins and Branched Fractal Manifolds of Attractors of Iterated Function Systems. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a83/
[1] Barnsley M. F., “Transformations between self-referential sets”, Amer. Math. Monthly, 116 (2009), 291–304, arXiv: math.DS/0703398 | DOI | MR | Zbl
[2] Barnsley M. F., Leśniak K., Basic topological structure of fast basins, arXiv: 1308.4230
[3] Barnsley M. F., Leśniak K., Vince A., Symbolic iterated function systems, fast basins and fractal manifolds, arXiv: 1308.3819v1
[4] Barnsley M. F., Vince A., “The chaos game on a general iterated function system”, Ergodic Theory Dynam. Systems, 31 (2011), 1073–1079, arXiv: 1005.0322 | DOI | MR | Zbl
[5] Barnsley M. F., Vince A., “Developments in fractal geometry”, Bull. Math. Sci., 3 (2013), 299–348 | DOI | MR | Zbl
[6] Barnsley M. F., Vince A., “Fractal continuation”, Constr. Approx., 38 (2013), 311–337, arXiv: 1209.6100 | DOI | MR | Zbl
[7] Barnsley M. F., Vince A., “The Conley attractors of an iterated function system”, Bull. Aust. Math. Soc., 88 (2013), 267–279, arXiv: 1206.6319 | DOI | MR | Zbl
[8] Barnsley M. F., Vince A., “Fractal tilings from iterated function systems”, Discrete Comput. Geom., 51 (2014), 729–752, arXiv: 1310.6344 | DOI | MR | Zbl
[9] Hata M., “On the structure of self-similar sets”, Japan J. Appl. Math., 2 (1985), 381–414 | DOI | MR | Zbl
[10] Hutchinson J. E., “Fractals and self-similarity”, Indiana Univ. Math. J., 30 (1981), 713–747 | DOI | MR | Zbl
[11] Ionescu M., Kumjian A., “Groupoid actions on fractafolds”, SIGMA, 10 (2014), 068, 14 pp., arXiv: 1311.3880 | DOI | MR | Zbl
[12] Kieninger B., Iterated function systems on compact Hausdorff spaces, Ph.D. Thesis, Augsburg University, Germany, 2002 | Zbl
[13] Mandelbrot B. B., The fractal geometry of nature, W.H. Freeman and Co., San Francisco, Calif., 1982 | MR | Zbl
[14] Strichartz R. S., “Fractals in the large”, Canad. J. Math., 50 (1998), 638–657 | DOI | MR | Zbl
[15] Strichartz R. S., “Fractafolds based on the Sierpiński gasket and their spectra”, Trans. Amer. Math. Soc., 355 (2003), 4019–4043 | DOI | MR | Zbl
[16] Strichartz R. S., Differential equations on fractals, Princeton University Press, Princeton, NJ, 2006 | MR | Zbl
[17] Vince A., “Möbius iterated function systems”, Trans. Amer. Math. Soc., 365 (2013), 491–509 | DOI | MR | Zbl