Equivariant Join and Fusion of Noncommutative Algebras
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We translate the concept of the join of topological spaces to the language of $C^*$-algebras, replace the $C^*$-algebra of functions on the interval $[0,1]$ with evaluation maps at $0$ and $1$ by a unital $C^*$-algebra $C$ with appropriate two surjections, and introduce the notion of the fusion of unital $C^*$-algebras. An appropriate modification of this construction yields the fusion comodule algebra of a comodule algebra $P$ with the coacting Hopf algebra $H$. We prove that, if the comodule algebra $P$ is principal, then so is the fusion comodule algebra. When $C=C([0,1])$ and the two surjections are evaluation maps at $0$ and $1$, this result is a noncommutative-algebraic incarnation of the fact that, for a compact Hausdorff principal $G$-bundle $X$, the diagonal action of $G$ on the join $X*G$ is free.
Keywords: $C^*$-algebras; Hopf algebras; free actions.
@article{SIGMA_2015_11_a81,
     author = {Ludwik D\k{a}browski and Tom Hadfield and Piotr M. Hajac},
     title = {Equivariant {Join} and {Fusion} of {Noncommutative} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a81/}
}
TY  - JOUR
AU  - Ludwik Dąbrowski
AU  - Tom Hadfield
AU  - Piotr M. Hajac
TI  - Equivariant Join and Fusion of Noncommutative Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a81/
LA  - en
ID  - SIGMA_2015_11_a81
ER  - 
%0 Journal Article
%A Ludwik Dąbrowski
%A Tom Hadfield
%A Piotr M. Hajac
%T Equivariant Join and Fusion of Noncommutative Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a81/
%G en
%F SIGMA_2015_11_a81
Ludwik Dąbrowski; Tom Hadfield; Piotr M. Hajac. Equivariant Join and Fusion of Noncommutative Algebras. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a81/

[1] Baum P. F., Da̧browski L., Hajac P. M., “Noncommutative Borsuk–Ulam-type conjectures”, Banach Center Publ., Polish Acad. Sci. Inst. Math., Warsaw (to appear) , arXiv: 1502.05756 | MR

[2] Baum P. F., De Commer K., Hajac P. M., Free actions of compact quantum group on unital $C^*$-algebras, arXiv: 1304.2812

[3] Brzeziński T., Hajac P. M., “The Chern–Galois character”, C. R. Math. Acad. Sci. Paris, 338 (2004), 113–116, arXiv: math.KT/0306436 | DOI | MR | Zbl

[4] D{a̧}browski L., Hadfield T., Hajac P. M., Matthes R., Wagner E., “Index pairings for pullbacks of ${C}^*$-algebras”, Operator Algebras and Quantum Groups, Banach Center Publ., 98, Polish Acad. Sci. Inst. Math., Warsaw, 2012, 67–84, arXiv: math.QA/0702001 | DOI | MR

[5] Da̧browski L., De Commer K., Hajac P. M., Wagner E., Noncommutative bordism of free actions of compact quantum groups on unital $C^*$-algebras, in preparation

[6] Hajac P. M., “Strong connections on quantum principal bundles”, Comm. Math. Phys., 182 (1996), 579–617, arXiv: hep-th/9406129 | DOI | MR | Zbl

[7] Hajac P. M., Krähmer U., Matthes R., Zieliński B., “Piecewise principal comodule algebras”, J. Noncommut. Geom., 5 (2011), 591–614, arXiv: 0707.1344 | DOI | MR | Zbl

[8] Jiang X., Su H., “On a simple unital projectionless $C^*$-algebra”, Amer. J. Math., 121 (1999), 359–413 | DOI | MR | Zbl

[9] Milnor J., “Construction of universal bundles, II”, Ann. of Math., 63 (1956), 430–436 | DOI | MR | Zbl

[10] Pflaum M. J., “Quantum groups on fibre bundles”, Comm. Math. Phys., 166 (1994), 279–315, arXiv: hep-th/9401085 | DOI | MR | Zbl

[11] Takesaki M., Theory of operator algebras, v. I, Springer-Verlag, New York–Heidelberg, 1979. | DOI | MR | Zbl

[12] Wassermann S., Exact $C^*$-algebras and related topics, Lecture Notes Series, 19, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1994 | MR

[13] Woronowicz S. L., “Compact quantum groups”, Symétries Quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, 845–884 | MR | Zbl