@article{SIGMA_2015_11_a81,
author = {Ludwik D\k{a}browski and Tom Hadfield and Piotr M. Hajac},
title = {Equivariant {Join} and {Fusion} of {Noncommutative} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a81/}
}
TY - JOUR AU - Ludwik Dąbrowski AU - Tom Hadfield AU - Piotr M. Hajac TI - Equivariant Join and Fusion of Noncommutative Algebras JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a81/ LA - en ID - SIGMA_2015_11_a81 ER -
Ludwik Dąbrowski; Tom Hadfield; Piotr M. Hajac. Equivariant Join and Fusion of Noncommutative Algebras. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a81/
[1] Baum P. F., Da̧browski L., Hajac P. M., “Noncommutative Borsuk–Ulam-type conjectures”, Banach Center Publ., Polish Acad. Sci. Inst. Math., Warsaw (to appear) , arXiv: 1502.05756 | MR
[2] Baum P. F., De Commer K., Hajac P. M., Free actions of compact quantum group on unital $C^*$-algebras, arXiv: 1304.2812
[3] Brzeziński T., Hajac P. M., “The Chern–Galois character”, C. R. Math. Acad. Sci. Paris, 338 (2004), 113–116, arXiv: math.KT/0306436 | DOI | MR | Zbl
[4] D{a̧}browski L., Hadfield T., Hajac P. M., Matthes R., Wagner E., “Index pairings for pullbacks of ${C}^*$-algebras”, Operator Algebras and Quantum Groups, Banach Center Publ., 98, Polish Acad. Sci. Inst. Math., Warsaw, 2012, 67–84, arXiv: math.QA/0702001 | DOI | MR
[5] Da̧browski L., De Commer K., Hajac P. M., Wagner E., Noncommutative bordism of free actions of compact quantum groups on unital $C^*$-algebras, in preparation
[6] Hajac P. M., “Strong connections on quantum principal bundles”, Comm. Math. Phys., 182 (1996), 579–617, arXiv: hep-th/9406129 | DOI | MR | Zbl
[7] Hajac P. M., Krähmer U., Matthes R., Zieliński B., “Piecewise principal comodule algebras”, J. Noncommut. Geom., 5 (2011), 591–614, arXiv: 0707.1344 | DOI | MR | Zbl
[8] Jiang X., Su H., “On a simple unital projectionless $C^*$-algebra”, Amer. J. Math., 121 (1999), 359–413 | DOI | MR | Zbl
[9] Milnor J., “Construction of universal bundles, II”, Ann. of Math., 63 (1956), 430–436 | DOI | MR | Zbl
[10] Pflaum M. J., “Quantum groups on fibre bundles”, Comm. Math. Phys., 166 (1994), 279–315, arXiv: hep-th/9401085 | DOI | MR | Zbl
[11] Takesaki M., Theory of operator algebras, v. I, Springer-Verlag, New York–Heidelberg, 1979. | DOI | MR | Zbl
[12] Wassermann S., Exact $C^*$-algebras and related topics, Lecture Notes Series, 19, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1994 | MR
[13] Woronowicz S. L., “Compact quantum groups”, Symétries Quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, 845–884 | MR | Zbl