@article{SIGMA_2015_11_a80,
author = {Goo Ishikawa and Yoshinori Machida},
title = {Monge{\textendash}Amp\`ere {Systems} with {Lagrangian} {Pairs}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a80/}
}
Goo Ishikawa; Yoshinori Machida. Monge–Ampère Systems with Lagrangian Pairs. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a80/
[1] Alekseevsky D. V., Alonso-Blanco R., Manno G., Pugliese F., “Contact geometry of multidimensional Monge–Ampère equations: characteristics, intermediate integrals and solutions”, Ann. Inst. Fourier (Grenoble), 62 (2012), 497–524, arXiv: 1003.5177 | DOI | MR | Zbl
[2] Arnold V. I., Geometrical methods in the theory of ordinary differential equations, Grundlehren der Mathematischen Wissenschaften, 250, Springer-Verlag, New York–Berlin, 1983 | DOI | MR | Zbl
[3] Banos B., “Nondegenerate Monge–Ampère structures in dimension 6”, Lett. Math. Phys., 62 (2002), 1–15, arXiv: math.DG/0211185 | DOI | MR | Zbl
[4] Banos B., “On symplectic classification of effective 3-forms and Monge–Ampère equations”, Differential Geom. Appl., 19 (2003), 147–166, arXiv: math-ph/0003026 | DOI | MR | Zbl
[5] Bryant R., Griffiths P., Grossman D., Exterior differential systems and Euler–Lagrange partial differential equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2003, arXiv: math.DG/0207039 | MR | Zbl
[6] Bryant R. L., “Bochner–Kähler metrics”, J. Amer. Math. Soc., 14 (2001), 623–715, arXiv: math.DG/0003099 | DOI | MR | Zbl
[7] Bryant R. L., Chern S. S., Gardner R. B., Goldschmidt H. L., Griffiths P. A., Exterior differential systems, Mathematical Sciences Research Institute Publications, 18, Springer-Verlag, New York, 1991 | DOI | MR | Zbl
[8] Gelfand I. M., Kapranov M. M., Zelevinsky A. V., Discriminants, resultants, and multidimensional determinants, Mathematics: Theory Applications, Birkhäuser Boston, Inc., Boston, MA, 1994 | DOI | MR | Zbl
[9] Goursat E., “Sur les équations du second ordre à $n$ variables analogues à l'équation de Monge–Ampère”, Bull. Soc. Math. France, 27 (1899), 1–34 | MR | Zbl
[10] Griffiths P., Harris J., Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience, New York, 1978 | DOI | MR | Zbl
[11] Hitchin N., “The geometry of three-forms in six dimensions”, J. Differential Geom., 55 (2000), 547–576 | MR | Zbl
[12] Ishikawa G., Machida Y., “Singularities of improper affine spheres and surfaces of constant Gaussian curvature”, Internat. J. Math., 17 (2006), 269–293, arXiv: math.DG/0502154 | DOI | MR | Zbl
[13] Ishikawa G., Morimoto T., “Solution surfaces of Monge–Ampère equations”, Differential Geom. Appl., 14 (2001), 113–124 | DOI | MR | Zbl
[14] Ivey T. A., Landsberg J. M., Cartan for beginners: differential geometry via moving frames and exterior differential systems, Graduate Studies in Mathematics, 61, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl
[15] Izumiya S., Pei D., Sano T., “Singularities of hyperbolic Gauss maps”, Proc. London Math. Soc., 86 (2003), 485–512 | DOI | MR | Zbl
[16] Kobayashi S., Transformation groups in differential geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, 70, Springer-Verlag, New York–Heidelberg, 1972 | DOI | MR | Zbl
[17] Kobayashi S., Nomizu K., Foundations of differential geometry, v. II, Interscience Publishers, New York–London, 1969 | MR | Zbl
[18] Kruglikov B., The D., “The gap phenomenon in parabolic geometries”, J. Reine Angew. Math. (to appear) , arXiv: 1303.1307
[19] Kushner A., Lychagin V., Rubtsov V., Contact geometry and nonlinear differential equations, Encyclopedia of Mathematics and its Applications, 101, Cambridge University Press, Cambridge, 2007 | MR | Zbl
[20] Lychagin V. V., “Contact geometry and second-order nonlinear differential equations”, Russ. Math. Surv., 34 (1979), 149–180 | DOI | MR | Zbl
[21] Lychagin V. V., Rubtsov V. N., Chekalov I. V., “A classification of Monge–Ampère equations”, Ann. Sci. École Norm. Sup., 26 (1993), 281–308 | MR | Zbl
[22] Machida Y., Morimoto T., “On decomposable Monge–Ampère equations”, Lobachevskii J. Math., 3 (1999), 185–196 | MR | Zbl
[23] Morimoto T., “La géométrie des équations de Monge–Ampère”, C. R. Acad. Sci. Paris Sér. A-B, 289 (1979), A25–A28 | MR
[24] Morimoto T., “Monge–Ampère equations viewed from contact geometry”, Symplectic Singularities and Geometry of Gauge Fields, Banach Center Publ., 39, Polish Acad. Sci. Inst. Math., Warsaw, 1998, 105–120 | MR
[25] Nomizu K., Sasaki T., Affine differential geometry. Geometry of affine immersions, Cambridge Tracts in Mathematics, 111, Cambridge University Press, Cambridge, 1994 | MR
[26] Spivak M., A comprehensive introduction to differential geometry, v. II, 2nd ed., Publish or Perish, Inc., Wilmington, Del., 1979
[27] Tabachnikov S., “Geometry of Lagrangian and Legendrian $2$-web”, Differential Geom. Appl., 3 (1993), 265–284 | DOI | MR | Zbl
[28] Takeuchi M., “Lagrangean contact structures on projective cotangent bundles”, Osaka J. Math., 31 (1994), 837–860 | MR | Zbl
[29] Tanaka N., “On generalized graded Lie algebras and geometric structures, I”, J. Math. Soc. Japan, 19 (1967), 215–254 | DOI | MR | Zbl
[30] Tanaka N., “On the equivalence problems associated with simple graded Lie algebras”, Hokkaido Math. J., 8 (1979), 23–84 | DOI | MR | Zbl
[31] Yamaguchi K., “Differential systems associated with simple graded Lie algebras”, Progress in Differential Geometry, Adv. Stud. Pure Math., 22, Math. Soc. Japan, Tokyo, 1993, 413–494 | MR | Zbl