Lagrangian Reduction on Homogeneous Spaces with Advected Parameters
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the Euler–Lagrange equations for a parameter dependent $G$-invariant Lagrangian on a homogeneous $G$-space. We consider the pullback of the parameter dependent Lagrangian to the Lie group $G$, emphasizing the special invariance properties of the associated Euler–Poincaré equations with advected parameters.
Keywords: Lagrangian; homogeneous space; Euler–Poincaré equation.
@article{SIGMA_2015_11_a8,
     author = {Cornelia Vizman},
     title = {Lagrangian {Reduction} on {Homogeneous} {Spaces} with {Advected} {Parameters}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a8/}
}
TY  - JOUR
AU  - Cornelia Vizman
TI  - Lagrangian Reduction on Homogeneous Spaces with Advected Parameters
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a8/
LA  - en
ID  - SIGMA_2015_11_a8
ER  - 
%0 Journal Article
%A Cornelia Vizman
%T Lagrangian Reduction on Homogeneous Spaces with Advected Parameters
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a8/
%G en
%F SIGMA_2015_11_a8
Cornelia Vizman. Lagrangian Reduction on Homogeneous Spaces with Advected Parameters. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a8/

[1] Arnold V., “Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits”, Ann. Inst. Fourier (Grenoble), 16 (1966), 319–361 | DOI | MR | Zbl

[2] Cendra H., Holm D. D., Marsden J. E., Ratiu T. S., “Lagrangian reduction, the Euler–Poincaré equations, and semidirect products”, Geometry of Differential Equations, Amer. Math. Soc. Transl., 186, Amer. Math. Soc., Providence, RI, 1998, 1–25, arXiv: chao-dyn/9906004 | MR | Zbl

[3] Gay-Balmaz F., Holm D. D., Ratiu T. S., “Variational principles for spin systems and the Kirchhoff rod”, J. Geom. Mech., 1 (2009), 417–444, arXiv: 0904.1428 | DOI | MR | Zbl

[4] Gay-Balmaz F., Ratiu T. S., “The geometric structure of complex fluids”, Adv. in Appl. Math., 42 (2009), 176–275, arXiv: 0903.4294 | DOI | MR | Zbl

[5] Gay-Balmaz F., Tronci C., “Reduction theory for symmetry breaking with applications to nematic systems”, Phys. D, 239 (2010), 1929–1947, arXiv: 0909.2165 | DOI | MR | Zbl

[6] Holm D. D., Marsden J. E., Ratiu T. S., “The Euler–Poincaré equations and semidirect products with applications to continuum theories”, Adv. Math., 137 (1998), 1–81, arXiv: chao-dyn/9801015 | DOI | MR | Zbl

[7] Khesin B., Lenells J., Misiołek G., Preston S. C., “Geometry of diffeomorphism groups, complete integrability and geometric statistics”, Geom. Funct. Anal., 23 (2013), 334–366, arXiv: 1105.0643 | DOI | MR | Zbl

[8] Khesin B., Misiołek G., “Euler equations on homogeneous spaces and Virasoro orbits”, Adv. Math., 176 (2003), 116–144, arXiv: math.SG/0210397 | DOI | MR | Zbl

[9] Marsden J. E., Ratiu T. S., Introduction to mechanics and symmetry. A basic exposition of classical mechanical systems, Texts in Applied Mathematics, 17, 2nd ed., Springer-Verlag, New York, 1999 | DOI | MR | Zbl

[10] Ti{ğ}lay F., Vizman C., “Generalized Euler–Poincaré equations on Lie groups and homogeneous spaces, orbit invariants and applications”, Lett. Math. Phys., 97 (2011), 45–60, arXiv: 1008.4377 | DOI | MR

[11] Vizman C., “Geodesic equations on diffeomorphism groups”, SIGMA, 4 (2008), 030, 22 pp., arXiv: 0803.1678 | DOI | MR | Zbl

[12] Vizman C., “Invariant variational problems on homogeneous spaces”, J. Geom. Phys. (to appear) | DOI