@article{SIGMA_2015_11_a8,
author = {Cornelia Vizman},
title = {Lagrangian {Reduction} on {Homogeneous} {Spaces} with {Advected} {Parameters}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a8/}
}
Cornelia Vizman. Lagrangian Reduction on Homogeneous Spaces with Advected Parameters. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a8/
[1] Arnold V., “Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits”, Ann. Inst. Fourier (Grenoble), 16 (1966), 319–361 | DOI | MR | Zbl
[2] Cendra H., Holm D. D., Marsden J. E., Ratiu T. S., “Lagrangian reduction, the Euler–Poincaré equations, and semidirect products”, Geometry of Differential Equations, Amer. Math. Soc. Transl., 186, Amer. Math. Soc., Providence, RI, 1998, 1–25, arXiv: chao-dyn/9906004 | MR | Zbl
[3] Gay-Balmaz F., Holm D. D., Ratiu T. S., “Variational principles for spin systems and the Kirchhoff rod”, J. Geom. Mech., 1 (2009), 417–444, arXiv: 0904.1428 | DOI | MR | Zbl
[4] Gay-Balmaz F., Ratiu T. S., “The geometric structure of complex fluids”, Adv. in Appl. Math., 42 (2009), 176–275, arXiv: 0903.4294 | DOI | MR | Zbl
[5] Gay-Balmaz F., Tronci C., “Reduction theory for symmetry breaking with applications to nematic systems”, Phys. D, 239 (2010), 1929–1947, arXiv: 0909.2165 | DOI | MR | Zbl
[6] Holm D. D., Marsden J. E., Ratiu T. S., “The Euler–Poincaré equations and semidirect products with applications to continuum theories”, Adv. Math., 137 (1998), 1–81, arXiv: chao-dyn/9801015 | DOI | MR | Zbl
[7] Khesin B., Lenells J., Misiołek G., Preston S. C., “Geometry of diffeomorphism groups, complete integrability and geometric statistics”, Geom. Funct. Anal., 23 (2013), 334–366, arXiv: 1105.0643 | DOI | MR | Zbl
[8] Khesin B., Misiołek G., “Euler equations on homogeneous spaces and Virasoro orbits”, Adv. Math., 176 (2003), 116–144, arXiv: math.SG/0210397 | DOI | MR | Zbl
[9] Marsden J. E., Ratiu T. S., Introduction to mechanics and symmetry. A basic exposition of classical mechanical systems, Texts in Applied Mathematics, 17, 2nd ed., Springer-Verlag, New York, 1999 | DOI | MR | Zbl
[10] Ti{ğ}lay F., Vizman C., “Generalized Euler–Poincaré equations on Lie groups and homogeneous spaces, orbit invariants and applications”, Lett. Math. Phys., 97 (2011), 45–60, arXiv: 1008.4377 | DOI | MR
[11] Vizman C., “Geodesic equations on diffeomorphism groups”, SIGMA, 4 (2008), 030, 22 pp., arXiv: 0803.1678 | DOI | MR | Zbl
[12] Vizman C., “Invariant variational problems on homogeneous spaces”, J. Geom. Phys. (to appear) | DOI