@article{SIGMA_2015_11_a79,
author = {Decio Levi and Luigi Martina and Pavel Winternitz},
title = {Structure {Preserving} {Discretizations} of the {Liouville} {Equation} and their {Numerical} {Tests}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a79/}
}
TY - JOUR AU - Decio Levi AU - Luigi Martina AU - Pavel Winternitz TI - Structure Preserving Discretizations of the Liouville Equation and their Numerical Tests JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a79/ LA - en ID - SIGMA_2015_11_a79 ER -
%0 Journal Article %A Decio Levi %A Luigi Martina %A Pavel Winternitz %T Structure Preserving Discretizations of the Liouville Equation and their Numerical Tests %J Symmetry, integrability and geometry: methods and applications %D 2015 %V 11 %U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a79/ %G en %F SIGMA_2015_11_a79
Decio Levi; Luigi Martina; Pavel Winternitz. Structure Preserving Discretizations of the Liouville Equation and their Numerical Tests. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a79/
[1] Adler V. E., Startsev S. Ya., “On discrete analogues of the Liouville equation”, Theoret. and Math. Phys., 121 (1999), 1484–1495, arXiv: solv-int/9902016 | DOI | MR | Zbl
[2] Bihlo A., “Invariant meshless discretization schemes”, J. Phys. A: Math. Theor., 46 (2013), 062001, 12 pp., arXiv: 1210.2762 | DOI | MR | Zbl
[3] Bihlo A., Coiteux-Roy X., Winternitz P., “The Korteweg–de Vries equation and its symmetry-preserving discretization”, J. Phys. A: Math. Theor., 48 (2015), 055201, 25 pp., arXiv: 1409.4340 | DOI | MR | Zbl
[4] Bihlo A., Nave J.-C., “Invariant discretization schemes using evolution-projection techniques”, SIGMA, 9 (2013), 052, 23 pp., arXiv: 1209.5028 | DOI | MR | Zbl
[5] Bourlioux A., Cyr-Gagnon C., Winternitz P., “Difference schemes with point symmetries and their numerical tests”, J. Phys. A: Math. Gen., 39 (2006), 6877–6896, arXiv: math-ph/0602057 | DOI | MR | Zbl
[6] Budd C., Dorodnitsyn V., “Symmetry-adapted moving mesh schemes for the nonlinear Schrödinger equation”, J. Phys. A: Math. Gen., 34 (2001), 10387–10400 | DOI | MR | Zbl
[7] Dorodnitsyn V., “Transformation groups in difference spaces”, J. Sov. Math., 55 (1991), 1490–1517 | DOI | Zbl
[8] Dorodnitsyn V., Applications of Lie groups to difference equations, Differential and Integral Equations and Their Applications, 8, CRC Press, Boca Raton, FL, 2011 | MR
[9] Dorodnitsyn V., Kaptsov E., Kozlov R., Winternitz P., “The adjoint equation method for constructing first integrals of difference equations”, J. Phys. A: Math. Theor., 48 (2015), 055202, 32 pp., arXiv: 1311.1597 | DOI | MR | Zbl
[10] Dorodnitsyn V., Kozlov R., “A heat transfer with a source: the complete set of invariant difference schemes”, J. Nonlinear Math. Phys., 10 (2003), 16–50, arXiv: math.AP/0309139 | DOI | MR
[11] Dorodnitsyn V., Kozlov R., Winternitz P., “Lie group classification of second-order ordinary difference equations”, J. Math. Phys., 41 (2000), 480–504 | DOI | MR | Zbl
[12] Dorodnitsyn V., Kozlov R., Winternitz P., “Continuous symmetries of Lagrangians and exact solutions of discrete equations”, J. Math. Phys., 45 (2004), 336–359, arXiv: nlin.SI/0307042 | DOI | MR | Zbl
[13] Dubrovin B. A., Fomenko A. T., Novikov S. P., Modern geometry — methods and applications., v. I, Graduate Texts in Mathematics, 93, The geometry of surfaces, transformation groups, and fields, 2nd ed., Springer-Verlag, 1992 | DOI | MR | Zbl
[14] Floreanini R., Negro J., Nieto L. M., Vinet L., “Symmetries of the heat equation on the lattice”, Lett. Math. Phys., 36 (1996), 351–355 | DOI | MR | Zbl
[15] Floreanini R., Vinet L., “Lie symmetries of finite-difference equations”, J. Math. Phys., 36 (1995), 7024–7042 | DOI | MR | Zbl
[16] Floreanini R., Vinet L., “Quantum symmetries of $q$-difference equations”, J. Math. Phys., 36 (1995), 3134–3156 | DOI | MR | Zbl
[17] Grammaticos B., Ramani A., “Painlevé equations, continuous, discrete and ultradiscrete”, Symmetries and Integrability of Difference Equations, London Mathematical Society Lecture Note Series, 381, eds. D. Levi, P. J. Olver, Z. Thomova, P. Winternitz, Université de Montréal, Montréal, QC, June 8–21, 2008, Cambridge, 2011, 50–82 | DOI | Zbl
[18] Grammaticos B., Ramani A., Papageorgiou V., Do integrable mappings have the Painlevé property?, Phys. Rev. Lett., 67 (1991), 1825–1828 | DOI | MR | Zbl
[19] Grant T. J., “Bespoke finite difference schemes that preserve multiple conservation laws”, LMS J. Comput. Math., 18 (2015), 372–403 | DOI | MR | Zbl
[20] Hairer E., Lubich C., Wanner G., Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations, Springer Series in Computational Mathematics, 31, 2nd ed., Springer-Verlag, Berlin, 2006 | DOI | MR | Zbl
[21] Hydon P. E., Difference equations by differential equation methods, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 2014 | Zbl
[22] Iserles A., A first course in the numerical analysis of differential equations, Cambridge Texts in Applied Mathematics, 2nd ed., Cambridge University Press, Cambridge, 2009 | MR | Zbl
[23] Levi D., Martina L., Winternitz P., “Lie-point symmetries of the discrete Liouville equation”, J. Phys. A: Math. Theor., 48 (2015), 025204, 18 pp., arXiv: 1407.4043 | DOI | MR | Zbl
[24] Levi D., Olver P. J., Thomova Z., Winternitz P. (eds.), Symmetries and integrability of difference equations, London Mathematical Society Lecture Note Series, 381, Cambridge University Press, Cambridge, 2011 | DOI | MR | Zbl
[25] Levi D., Rodríguez M. A., “Construction of partial difference schemes. I. The Clairaut, Schwarz, Young theorem on the lattice”, J. Phys. A: Math. Theor., 46 (2013), 295203, 19 pp. | DOI | MR | Zbl
[26] Levi D., Rodríguez M. A., On the construction of partial difference schemes. II: Discrete variables and invariant schemes, arXiv: 1407.0838
[27] Levi D., Vinet L., Winternitz P., “Lie group formalism for difference equations”, J. Phys. A: Math. Gen., 30 (1997), 633–649 | DOI | MR | Zbl
[28] Levi D., Winternitz P., “Continuous symmetries of discrete equations”, Phys. Lett. A, 152 (1991), 335–338 | DOI | MR
[29] Levi D., Winternitz P., “Continuous symmetries of difference equations”, J. Phys. A: Math. Gen., 39 (2006), R1–R63, arXiv: nlin.SI/0502004 | DOI | MR | Zbl
[30] Levi D., Winternitz P., Yamilov R. I., “Lie point symmetries of differential-difference equations”, J. Phys. A: Math. Theor., 43 (2010), 292002, 14 pp., arXiv: 1004.5311 | DOI | MR | Zbl
[31] Lie S., Theorie der Transformationsgruppen, v. 1, B.G. Teubner, Leipzig, 1888; v. 2, 1890; v. 3, 1893
[32] Liouville J., “Sur l'equation aux différences partielles $\frac{d^2 \log \lambda}{d ud v} \pm \frac{\lambda}{2a^2}=0$”, J. Math. Pures Appl., 18 (1853), 71–72
[33] Marsden J. E., West M., “Discrete mechanics and variational integrators”, Acta Numer., 10 (2001), 357–514 | DOI | MR | Zbl
[34] McLachlan R. I., Quispel G. R. W., “Geometric integrators for ODEs”, J. Phys. A: Math. Gen., 39 (2006), 5251–5285 | DOI | MR | Zbl
[35] Medolaghi P., “Classificazione delle equazioni alle derivate parziali del secondo ordine, che ammettono un gruppo infinito di trasformazioni puntuali”, Ann. Mat. Pura Appl., 1 (1898), 229–263 | DOI | Zbl
[36] Olver P. J., “Applications of Lie groups to differential equations”, Graduate Texts in Mathematics, 107, 2nd ed., Springer-Verlag, New York, 1993 | DOI | MR | Zbl
[37] Rebelo R., Valiquette F., “Symmetry preserving numerical schemes for partial differential equations and their numerical tests”, J. Difference Equ. Appl., 19 (2013), 738–757, arXiv: 1110.5921 | DOI | MR | Zbl
[38] Rebelo R., Valiquette F., “Invariant discretization of partial differential equations admitting infinite-dimensional symmetry groups”, J. Difference Equ. Appl., 21 (2015), 285–318, arXiv: 1401.4380 | DOI | MR | Zbl
[39] Rebelo R., Winternitz P., “Invariant difference schemes and their application to ${\rm sl}(2,{\mathbb R})$ invariant ordinary differential equations”, J. Phys. A: Math. Theor., 42 (2009), 454016, 10 pp., arXiv: 0906.2980 | DOI | MR | Zbl
[40] Rodríguez M. A., Winternitz P., “Lie symmetries and exact solutions of first-order difference schemes”, J. Phys. A: Math. Gen., 37 (2004), 6129–6142, arXiv: nlin.SI/0402047 | DOI | MR | Zbl
[41] Valiquette F., Winternitz P., “Discretization of partial differential equations preserving their physical symmetries”, J. Phys. A: Math. Gen., 38 (2005), 9765–9783, arXiv: math-ph/0507061 | DOI | MR | Zbl
[42] Winternitz P., “Symmetry preserving discretization of differential equations and Lie point symmetries of differential-difference equations”, Symmetries and Integrability of Difference Equations (Université de Montréal, Montréal, QC, June 8–21, 2008), London Mathematical Society Lecture Note Series, 381, eds. D. Levi, P. J. Olver, Z. Thomova, P. Winternitz, Cambridge University Press, Cambridge, 2011, 292–341 | DOI | MR | Zbl