@article{SIGMA_2015_11_a77,
author = {S. Twareque Ali and Fabio Bagarello and Jean Pierre Gazeau},
title = {$\mathcal{D}${-Pseudo-Bosons,} {Complex} {Hermite} {Polynomials,} and {Integral} {Quantization}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a77/}
}
TY - JOUR
AU - S. Twareque Ali
AU - Fabio Bagarello
AU - Jean Pierre Gazeau
TI - $\mathcal{D}$-Pseudo-Bosons, Complex Hermite Polynomials, and Integral Quantization
JO - Symmetry, integrability and geometry: methods and applications
PY - 2015
VL - 11
UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a77/
LA - en
ID - SIGMA_2015_11_a77
ER -
%0 Journal Article
%A S. Twareque Ali
%A Fabio Bagarello
%A Jean Pierre Gazeau
%T $\mathcal{D}$-Pseudo-Bosons, Complex Hermite Polynomials, and Integral Quantization
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a77/
%G en
%F SIGMA_2015_11_a77
S. Twareque Ali; Fabio Bagarello; Jean Pierre Gazeau. $\mathcal{D}$-Pseudo-Bosons, Complex Hermite Polynomials, and Integral Quantization. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a77/
[1] Abreu L. D., “Sampling and interpolation in Bargmann–Fock spaces of polyanalytic functions”, Appl. Comput. Harmon. Anal., 29 (2010), 287–302, arXiv: 0901.4386 | DOI | MR | Zbl
[2] Abreu L. D., Feichtinger H. G., “Function spaces of polyanalytic functions”, Harmonic and Complex Analysis and its Applications, Trends Math., ed. A. Vasil'ev, Birkhäuser/Springer, Cham, 2014, 1–38 | DOI | MR | Zbl
[3] Abreu L. D., Gröchenig K., “Banach Gabor frames with Hermite functions: polyanalytic spaces from the Heisenberg group”, Appl. Anal., 91 (2012), 1981–1997, arXiv: 1012.4283 | DOI | MR | Zbl
[4] Agorram F., Benkhadra A., El Hamyani A., Ghanmi A., Complex Hermite functions as Fourier–Wigner transform, arXiv: 1506.07084
[5] Ali S. T., Antoine J. P., Gazeau J. P., Coherent states, wavelets, and their generalizations, Theoretical and Mathematical Physics, 2nd ed., Springer, New York, 2014 | DOI | MR | Zbl
[6] Ali S. T., Bagarello F., Gazeau J. P., “Quantizations from reproducing kernel spaces”, Ann. Physics, 332 (2013), 127–142, arXiv: 1212.3664 | DOI | MR
[7] Ali S. T., Bhattacharyya T., Roy S. S., “Coherent states on Hilbert modules”, J. Phys. A: Math. Theor., 44 (2011), 275202, 16 pp., arXiv: 1007.0798 | DOI | MR | Zbl
[8] Ali S. T., Ismail M. E. H., Shah N. M., Deformed complex Hermite polynomials, arXiv: 1410.3908
[9] Bagarello F., “Examples of pseudo-bosons in quantum mechanics”, Phys. Lett. A, 374 (2010), 3823–3827, arXiv: 1007.4349 | DOI | MR | Zbl
[10] Bagarello F., “Pseudobosons, Riesz bases, and coherent states”, J. Math. Phys., 51 (2010), 023531, 10 pp., arXiv: 1001.1136 | DOI | MR | Zbl
[11] Bagarello F., “From self to non self-adjoint harmonic oscillators: physical consequences and mathematical pitfalls”, Phys. Rev. A, 88 (2013), 032120, 5 pp., arXiv: 1309.5065 | DOI
[12] Bagarello F., “More mathematics for pseudo-bosons”, J. Math. Phys., 54 (2013), 063512, 11 pp., arXiv: 1309.0677 | DOI | MR | Zbl
[13] Bagarello F., “Deformed canonical (anti-)commutation relations and non self-adjoint Hamiltonians”, Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects, eds. F. Bagarello, J. P. Gazeau, F. H. Szafraniec, M. Znojil, John Wiley Sons, Inc., Hoboken, NJ, 2015, 121–188 | DOI
[14] Bagarello F., Fring A., “Non-self-adjoint model of a two-dimensional noncommutative space with an unbound metric”, Phys. Rev. A, 88 (2013), 042119, 6 pp., arXiv: 1310.4775 | DOI
[15] Baldiotti M., Fresneda R., Gazeau J. P., “Three examples of covariant integral quantization”, PoS(ICMP2013), PoS Proc. Sci., 2014, 003, 18 pp.
[16] Balogh F., Shah N. M., Ali S. T., “On some families of complex Hermite polynomials and their applications to physics”, Operator Algebras and Mathematical Physics, Operator Theory: Advances and Applications, 247, eds. T. Bhattacharyya, M. A. Dritschel, Birkhäuser, Basel, 2015, 157–171, arXiv: 1309.4163 | DOI
[17] Bergeron H., Gazeau J. P., “Integral quantizations with two basic examples”, Ann. Physics, 344 (2014), 43–68, arXiv: 1308.2348 | DOI | MR
[18] Cahill K. E., Glauber R. J., “Ordered expansion in boson amplitude operators”, Phys. Rev., 177 (1969), 1857–1881 | DOI
[19] Cotfas N., Gazeau J. P., Górska K., “Complex and real Hermite polynomials and related quantizations”, J. Phys. A: Math. Theor., 43 (2010), 305304, 14 pp., arXiv: 1001.3248 | DOI | MR | Zbl
[20] Cuntz J., “Simple $C^*$-algebras generated by isometries”, Comm. Math. Phys., 57 (1977), 173–185 | DOI | MR | Zbl
[21] Davies E. B., “Pseudo-spectra, the harmonic oscillator and complex resonances”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455 (1999), 585–599 | DOI | MR | Zbl
[22] Davies E. B., Linear operators and their spectra, Cambridge Studies in Advanced Mathematics, 106, Cambridge University Press, Cambridge, 2007 | DOI | MR | Zbl
[23] Davies E. B., Kuijlaars A. B. J., J. London Math. Soc., 70 (2004), Spectral asymptotics of the non-self-adjoint harmonic oscillator | DOI | MR
[24] Gazeau J. P., Heller B., “Positive-operator valued measure (POVM) quantization”, Axioms, 4 (2015), 1–29, arXiv: 1408.6090 | DOI | Zbl
[25] Ghanmi A., “A class of generalized complex Hermite polynomials”, J. Math. Anal. Appl., 340 (2008), 1395–1406, arXiv: 0704.3576 | DOI | MR | Zbl
[26] Gradshteyn I. S., Ryzhik I. M., Table of integrals, series, and products, 7th ed., Elsevier/Academic Press, Amsterdam, 2007 | MR | Zbl
[27] Gröchenig K., Lyubarskii Y., “Gabor (super)frames with Hermite functions”, Math. Ann., 345 (2009), 267–286, arXiv: 0804.4613 | DOI | MR | Zbl
[28] Haimi A., Hedenmalm H., “The polyanalytic Ginibre ensembles”, J. Stat. Phys., 153 (2013), 10–47, arXiv: 1106.2975 | DOI | MR | Zbl
[29] Ismail M. E. H., “Analytic properties of complex Hermite polynomials”, Trans. Amer. Math. Soc. (to appear) | DOI
[30] Ismail M. E. H., Simeonov P., “Complex Hermite polynomials: their combinatorics and integral operators”, Proc. Amer. Math. Soc., 143 (2015), 1397–1410 | DOI | MR | Zbl
[31] Ismail M. E. H., Zeng J., “A combinatorial approach to the 2D-Hermite and 2D-Laguerre polynomials”, Adv. in Appl. Math., 64 (2015), 70–88 | DOI | MR | Zbl
[32] Ismail M. E. H., Zeng J., “Two variable extensions of the Laguerre and disc polynomials”, J. Math. Anal. Appl., 424 (2015), 289–303 | DOI | MR | Zbl
[33] Ismail M. E. H., Zhang R., Classes of bivariate orthogonal polynomials, arXiv: 1502.07256 | MR
[34] Itô K., “Complex multiple Wiener integral”, Japan J. Math., 22 (1952), 63–86 | MR | Zbl
[35] Magnus W., Oberhettinger F., Soni R. P., Formulas and theorems for the special functions of mathematical physics, Die Grundlehren der mathematischen Wissenschaften, 52, 3rd ed., Springer-Verlag, New York, 1966 | DOI | MR | Zbl
[36] Pedersen G. K., Analysis now, Graduate Texts in Mathematics, 118, Springer-Verlag, New York, 1989 | DOI | MR | Zbl
[37] Szegő G., Orthogonal polynomials, American Mathematical Society, Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975
[38] Trifonov D. A., “Pseudo-boson coherent and Fock states”, Trends in Differential Geometry, Complex Analysis and Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2009, 241–250, arXiv: 0902.3744 | DOI | MR | Zbl
[39] Vasilevski N. L., “Poly–Fock spaces”, Differential Operators and Related Topics (Odessa, 1997), v. I, Operator Theory: Advances and Applications, 117, Birkhäuser, Basel, 2000, 371–386 | MR | Zbl
[40] Wünsche A., “Laguerre $2$D-functions and their application in quantum optics”, J. Phys. A: Math. Gen., 31 (1998), 8267–8287 | DOI | MR | Zbl
[41] Young R. M., “On complete biorthogonal systems”, Proc. Amer. Math. Soc., 83 (1981), 537–540 | DOI | MR | Zbl