Moments and Legendre–Fourier Series for Measures Supported on Curves
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some important problems (e.g., in optimal transport and optimal control) have a relaxed (or weak) formulation in a space of appropriate measures which is much easier to solve. However, an optimal solution $\mu$ of the latter solves the former if and only if the measure $\mu$ is supported on a “trajectory” $\{(t,x(t))\colon t\in [0,T]\}$ for some measurable function $x(t)$. We provide necessary and sufficient conditions on moments $(\gamma_{ij})$ of a measure $d\mu(x,t)$ on $[0,1]^2$ to ensure that $\mu$ is supported on a trajectory $\{(t,x(t))\colon t\in [0,1]\}$. Those conditions are stated in terms of Legendre–Fourier coefficients ${\mathbf f}_j=({\mathbf f}_j(i))$ associated with some functions $f_j\colon [0,1]\to {\mathbb R}$, $j=1,\ldots$, where each ${\mathbf f}_j$ is obtained from the moments $\gamma_{ji}$, $i=0,1,\ldots$, of $\mu$.
Mots-clés : moment problem; Legendre polynomials; Legendre–Fourier series.
@article{SIGMA_2015_11_a76,
     author = {Jean B. Lasserre},
     title = {Moments and {Legendre{\textendash}Fourier} {Series} for {Measures} {Supported} {on~Curves}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a76/}
}
TY  - JOUR
AU  - Jean B. Lasserre
TI  - Moments and Legendre–Fourier Series for Measures Supported on Curves
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a76/
LA  - en
ID  - SIGMA_2015_11_a76
ER  - 
%0 Journal Article
%A Jean B. Lasserre
%T Moments and Legendre–Fourier Series for Measures Supported on Curves
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a76/
%G en
%F SIGMA_2015_11_a76
Jean B. Lasserre. Moments and Legendre–Fourier Series for Measures Supported on Curves. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a76/

[1] Beiglböck M., Griessler C., A land of monotone plenty, Technical report, Department of Mathematics, University of Vienna, 2015

[2] Charina M., Lasserre J. B., Putinar M., Stöckler J., “Structured function systems and applications”, Oberwolfach Rep., 10 (2013), 579–655 | DOI | MR

[3] Diaconis P., Freedman D., “The Markov moment problem and de Finetti's theorem, I”, Math. Z., 247 (2004), 183–199 | DOI | MR | Zbl

[4] Dunkl C. F., Xu Y., Orthogonal polynomials of several variables,, Encyclopedia of Mathematics and its Applications, 81, Cambridge University Press, Cambridge, 2001 | DOI | MR | Zbl

[5] Gottlieb D., Shu C.-W., “On the Gibbs phenomenon. III: Recovering exponential accuracy in a sub-interval from a spectral partial sum of a piecewise analytic function”, SIAM J. Numer. Anal., 33 (1996), 280–290 | DOI | MR | Zbl

[6] Helton J. W., Lasserre J. B., Putinar M., “Measures with zeros in the inverse of their moment matrix”, Ann. Probab., 36 (2008), 1453–1471, arXiv: math.PR/0702314 | DOI | MR | Zbl

[7] Lasserre J. B., “Borel measures with a density on a compact semi-algebraic set”, Arch. Math. (Basel), 101 (2013), 361–371, arXiv: 1304.1716 | DOI | MR | Zbl

[8] Lasserre J. B., Henrion D., Prieur C., Trélat E., “Nonlinear optimal control via occupation measures and LMI-relaxations”, SIAM J. Control Optim., 47 (2008), 1643–1666, arXiv: math.OC/0703377 | DOI | MR | Zbl

[9] McCann R. J., Guillen N., Five lectures on optimal transportation: geometry, regularity and applications, arXiv: 1011.2911 | MR

[10] Putinar M., “Extremal solutions of the two-dimensional $L$-problem of moments”, J. Funct. Anal., 136 (1996), 331–364 | DOI | MR | Zbl

[11] Putinar M., “Extremal solutions of the two-dimensional $L$-problem of moments, II”, J. Approx. Theory, 92 (1998), 38–58, arXiv: math.CA/9512222 | DOI | MR | Zbl

[12] Suetin P. K., “On the representation of continuous and differentiable functions by Fourier series in Legendre polynomials”, Sov. Math. Dokl., 158 (1964), 1408–1410 | MR | Zbl

[13] Villani C., Topics in optimal transportation, Graduate Studies in Mathematics, 58, Amer. Math. Soc., Providence, RI, 2003 | DOI | MR | Zbl

[14] Vinter R., “Convex duality and nonlinear optimal control”, SIAM J. Control Optim., 31 (1993), 518–538 | DOI | MR | Zbl

[15] Wang H., Xiang S., “On the convergence rates of Legendre approximation”, Math. Comp., 81 (2012), 861–877 | DOI | MR | Zbl