An Asymmetric Noncommutative Torus
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce a family of spectral triples that describe the curved noncommutative two-torus. The relevant family of new Dirac operators is given by rescaling one of two terms in the flat Dirac operator. We compute the dressed scalar curvature and show that the Gauss–Bonnet theorem holds (which is not covered by the general result of Connes and Moscovici).
Keywords: noncommutative geometry; Gauss–Bonnet; spectral triple.
@article{SIGMA_2015_11_a74,
     author = {Ludwik D\k{a}browski and Andrzej Sitarz},
     title = {An {Asymmetric} {Noncommutative} {Torus}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a74/}
}
TY  - JOUR
AU  - Ludwik Dąbrowski
AU  - Andrzej Sitarz
TI  - An Asymmetric Noncommutative Torus
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a74/
LA  - en
ID  - SIGMA_2015_11_a74
ER  - 
%0 Journal Article
%A Ludwik Dąbrowski
%A Andrzej Sitarz
%T An Asymmetric Noncommutative Torus
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a74/
%G en
%F SIGMA_2015_11_a74
Ludwik Dąbrowski; Andrzej Sitarz. An Asymmetric Noncommutative Torus. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a74/

[1] Bhuyain T. A., Marcolli M., “The Ricci flow on noncommutative two-tori”, Lett. Math. Phys., 101 (2012), 173–194, arXiv: 1107.4788 | DOI | MR | Zbl

[2] Cohen P. B., Connes A., Conformal geometry of the irrational rotation algebra, Preprint MPI, No 92-93, 1992 | MR

[3] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl

[4] Connes A., Moscovici H., “The local index formula in noncommutative geometry”, Geom. Funct. Anal., 5 (1995), 174–243 | DOI | MR | Zbl

[5] Connes A., Moscovici H., “Type III and spectral triples”, Traces in Number Theory, Geometry and Quantum Fields, Aspects Math., E38, Friedr. Vieweg, Wiesbaden, 2008, 57–71, arXiv: math.OA/0609703 | MR

[6] Connes A., Moscovici H., “Modular curvature for noncommutative two-tori”, J. Amer. Math. Soc., 27 (2014), 639–684, arXiv: 1110.3500 | DOI | MR | Zbl

[7] Connes A., Tretkoff P., “The Gauss–Bonnet theorem for the noncommutative two torus”, Noncommutative Geometry, Arithmetic, and Related Topics, Johns Hopkins Univ. Press, Baltimore, MD, 2011, 141–158, arXiv: 0910.0188 | MR | Zbl

[8] D{a̧}browski L., Sitarz A., “Curved noncommutative torus and Gauss–Bonnet”, J. Math. Phys., 54 (2013), 013518, 11 pp., arXiv: 1204.0420 | DOI | MR

[9] D{a̧}browski L., Sitarz A., “Noncommutative circle bundles and new Dirac operators”, Comm. Math. Phys., 318 (2013), 111–130, arXiv: 1012.3055 | DOI | MR

[10] Fathizadeh F., Khalkhali M., “The Gauss–Bonnet theorem for noncommutative two tori with a general conformal structure”, J. Noncommut. Geom., 6 (2012), 457–480, arXiv: 1005.4947 | DOI | MR | Zbl

[11] Fathizadeh F., Khalkhali M., “Scalar curvature for the noncommutative two torus”, J. Noncommut. Geom., 7 (2013), 1145–1183, arXiv: 1110.3511 | DOI | MR | Zbl

[12] Fathizadeh F., Khalkhali M., “Weyl's law and Connes' trace theorem for noncommutative two tori”, Lett. Math. Phys., 103 (2013), 1–18, arXiv: 1111.1358 | DOI | MR | Zbl

[13] Fathizadeh F., Wong M. W., “Noncommutative residues for pseudo-differential operators on the noncommutative two-torus”, J. Pseudo-Differ. Oper. Appl., 2 (2011), 289–302 | DOI | MR | Zbl

[14] Lesch M., Divided differences in noncommutative geometry: rearrangement lemma, functional calculus and expansional formula, arXiv: 1405.0863

[15] Ponge R., Wang H., “Noncommutative geometry and conformal geometry. III: Vafa–Witten inequality and Poincaré duality”, Adv. Math., 272 (2015), 761–819, arXiv: 1310.6138 | DOI | MR | Zbl

[16] Rosenberg J., “Levi-Civita's theorem for noncommutative tori”, SIGMA, 9 (2013), 071, 9 pp., arXiv: 1307.3775 | DOI | MR | Zbl