@article{SIGMA_2015_11_a74,
author = {Ludwik D\k{a}browski and Andrzej Sitarz},
title = {An {Asymmetric} {Noncommutative} {Torus}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a74/}
}
Ludwik Dąbrowski; Andrzej Sitarz. An Asymmetric Noncommutative Torus. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a74/
[1] Bhuyain T. A., Marcolli M., “The Ricci flow on noncommutative two-tori”, Lett. Math. Phys., 101 (2012), 173–194, arXiv: 1107.4788 | DOI | MR | Zbl
[2] Cohen P. B., Connes A., Conformal geometry of the irrational rotation algebra, Preprint MPI, No 92-93, 1992 | MR
[3] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl
[4] Connes A., Moscovici H., “The local index formula in noncommutative geometry”, Geom. Funct. Anal., 5 (1995), 174–243 | DOI | MR | Zbl
[5] Connes A., Moscovici H., “Type III and spectral triples”, Traces in Number Theory, Geometry and Quantum Fields, Aspects Math., E38, Friedr. Vieweg, Wiesbaden, 2008, 57–71, arXiv: math.OA/0609703 | MR
[6] Connes A., Moscovici H., “Modular curvature for noncommutative two-tori”, J. Amer. Math. Soc., 27 (2014), 639–684, arXiv: 1110.3500 | DOI | MR | Zbl
[7] Connes A., Tretkoff P., “The Gauss–Bonnet theorem for the noncommutative two torus”, Noncommutative Geometry, Arithmetic, and Related Topics, Johns Hopkins Univ. Press, Baltimore, MD, 2011, 141–158, arXiv: 0910.0188 | MR | Zbl
[8] D{a̧}browski L., Sitarz A., “Curved noncommutative torus and Gauss–Bonnet”, J. Math. Phys., 54 (2013), 013518, 11 pp., arXiv: 1204.0420 | DOI | MR
[9] D{a̧}browski L., Sitarz A., “Noncommutative circle bundles and new Dirac operators”, Comm. Math. Phys., 318 (2013), 111–130, arXiv: 1012.3055 | DOI | MR
[10] Fathizadeh F., Khalkhali M., “The Gauss–Bonnet theorem for noncommutative two tori with a general conformal structure”, J. Noncommut. Geom., 6 (2012), 457–480, arXiv: 1005.4947 | DOI | MR | Zbl
[11] Fathizadeh F., Khalkhali M., “Scalar curvature for the noncommutative two torus”, J. Noncommut. Geom., 7 (2013), 1145–1183, arXiv: 1110.3511 | DOI | MR | Zbl
[12] Fathizadeh F., Khalkhali M., “Weyl's law and Connes' trace theorem for noncommutative two tori”, Lett. Math. Phys., 103 (2013), 1–18, arXiv: 1111.1358 | DOI | MR | Zbl
[13] Fathizadeh F., Wong M. W., “Noncommutative residues for pseudo-differential operators on the noncommutative two-torus”, J. Pseudo-Differ. Oper. Appl., 2 (2011), 289–302 | DOI | MR | Zbl
[14] Lesch M., Divided differences in noncommutative geometry: rearrangement lemma, functional calculus and expansional formula, arXiv: 1405.0863
[15] Ponge R., Wang H., “Noncommutative geometry and conformal geometry. III: Vafa–Witten inequality and Poincaré duality”, Adv. Math., 272 (2015), 761–819, arXiv: 1310.6138 | DOI | MR | Zbl
[16] Rosenberg J., “Levi-Civita's theorem for noncommutative tori”, SIGMA, 9 (2013), 071, 9 pp., arXiv: 1307.3775 | DOI | MR | Zbl