Fractional Integral and Generalized Stieltjes Transforms for Hypergeometric Functions as Transmutation Operators
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For each of the eight $n$-th derivative parameter changing formulas for Gauss hypergeometric functions a corresponding fractional integration formula is given. For both types of formulas the differential or integral operator is intertwining between two actions of the hypergeometric differential operator (for two sets of parameters): a so-called transmutation property. This leads to eight fractional integration formulas and four generalized Stieltjes transform formulas for each of the six different explicit solutions of the hypergeometric differential equation, by letting the transforms act on the solutions. By specialization two Euler type integral representations for each of the six solutions are obtained.
Keywords: Gauss hypergeometric function; Euler integral representation; fractional integral transform; Stieltjes transform; transmutation formula.
@article{SIGMA_2015_11_a73,
     author = {Tom H. Koornwinder},
     title = {Fractional {Integral} and {Generalized} {Stieltjes} {Transforms} for {Hypergeometric} {Functions} as {Transmutation} {Operators}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a73/}
}
TY  - JOUR
AU  - Tom H. Koornwinder
TI  - Fractional Integral and Generalized Stieltjes Transforms for Hypergeometric Functions as Transmutation Operators
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a73/
LA  - en
ID  - SIGMA_2015_11_a73
ER  - 
%0 Journal Article
%A Tom H. Koornwinder
%T Fractional Integral and Generalized Stieltjes Transforms for Hypergeometric Functions as Transmutation Operators
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a73/
%G en
%F SIGMA_2015_11_a73
Tom H. Koornwinder. Fractional Integral and Generalized Stieltjes Transforms for Hypergeometric Functions as Transmutation Operators. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a73/

[1] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl

[2] Askey R., Orthogonal polynomials and special functions, Society for Industrial and Applied Mathematics, Philadelphia, Pa, 1975 | MR

[3] Askey R., Fitch J., “Integral representations for Jacobi polynomials and some applications”, J. Math. Anal. Appl., 26 (1969), 411–437 | DOI | MR | Zbl

[4] Bateman H., “The solution of linear differential equations by means of definite integrals”, Trans. Cambridge Philos. Soc., 21 (1909), 171–196 | Zbl

[5] Camporesi R., “The biradial Paley–Wiener theorem for the Helgason Fourier transform on Damek–Ricci spaces”, J. Funct. Anal., 267 (2014), 428–451 | DOI | MR | Zbl

[6] Dereziński J., “Hypergeometric type functions and their symmetries”, Ann. Henri Poincaré, 15 (2014), 1569–1653, arXiv: 1305.3113 | DOI | MR | Zbl

[7] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. I, Mc-Graw Hill, New York, 1953

[8] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. II, Mc-Graw Hill, New York, 1953

[9] Flanders H., “Differentiation under the integral sign”, Amer. Math. Monthly, 80 (1973), 615–627 ; Correction, Amer. Math. Monthly, 81 (1974), 145 | DOI | MR | Zbl | DOI | MR

[10] Karp D., Prilepkina E., “Generalized Stieltjes functions and their exact order”, J. Class. Anal., 1 (2012), 53–74 | MR

[11] Karp D., Prilepkina E., “Hypergeometric functions as generalized Stieltjes transforms”, J. Math. Anal. Appl., 393 (2012), 348–359, arXiv: 1112.5769 | DOI | MR | Zbl

[12] Karp D., Sitnik S. M., “Inequalities and monotonicity of ratios for generalized hypergeometric function”, J. Approx. Theory, 161 (2009), 337–352, arXiv: math.CA/0703084 | DOI | MR | Zbl

[13] Kodavanji S., Rathie A. K., Paris R. B., A derivation of two transformation formulas contiguous to that of Kummer's second theorem via a differential equation approach, arXiv: 1501.06173

[14] Letnikov A. V., “Research related to the theory of integrals of the form $\int_0^x (x-u)^{p-1} f(u) du$. III: Application to the integration of certain differential equations”, Mat. Sb., 7 (1874), 111–205 (in Russian)

[15] Lions J. L., “Opérateurs de Delsarte et problèmes mixtes”, Bull. Soc. Math. France, 84 (1956), 9–95 | MR | Zbl

[16] Miller K. S., Ross B., An introduction to the fractional calculus and fractional differential equations, A Wiley-Interscience Publication, John Wiley Sons, Inc., New York, 1993 | MR | Zbl

[17] Miller W. (Jr.), “Lie theory and generalizations of the hypergeometric functions”, SIAM J. Appl. Math., 25 (1973), 226–235 | DOI | MR | Zbl

[18] Olver F. W. J., Lozier D. W., Boisvert R. F., Clark C. W. (eds.), NIST handbook of mathematical functions, , U.S. Department of Commerce National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010 http://dlmf.nist.gov | MR

[19] Rainville E. D., Special functions, The Macmillan Co., New York, 1960 | MR | Zbl

[20] Saito M., “Symmetry algebras of normal ${\mathcal A}$-hypergeometric systems”, Hokkaido Math. J., 25 (1996), 591–619 | DOI | MR | Zbl

[21] Sitnik S. M., Transmutations and applications: a survey, arXiv: (in Russian) 1012.3741

[22] Sitnik S. M., Buschman–Erdelyi transmutations, classification and applications, arXiv: 1304.2114

[23] Sostak R. Ya., “Aleksei Vasilevic Letnikov”, Istor.-Mat. Issled., 5 (1952), 167–238 (in Russian) | MR

[24] Swathi M., Rathie A. K., Paris R. B., A derivation of two quadratic transformations contiguous to that of Gauss via a differential equation approach, arXiv: 1411.5262

[25] Szegő G., Orthogonal polynomials, American Mathematical Society, Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975

[26] Widder D. V., “The Stieltjes transform”, Trans. Amer. Math. Soc., 43 (1938), 7–60 | DOI | MR