@article{SIGMA_2015_11_a73,
author = {Tom H. Koornwinder},
title = {Fractional {Integral} and {Generalized} {Stieltjes} {Transforms} for {Hypergeometric} {Functions} as {Transmutation} {Operators}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a73/}
}
TY - JOUR AU - Tom H. Koornwinder TI - Fractional Integral and Generalized Stieltjes Transforms for Hypergeometric Functions as Transmutation Operators JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a73/ LA - en ID - SIGMA_2015_11_a73 ER -
%0 Journal Article %A Tom H. Koornwinder %T Fractional Integral and Generalized Stieltjes Transforms for Hypergeometric Functions as Transmutation Operators %J Symmetry, integrability and geometry: methods and applications %D 2015 %V 11 %U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a73/ %G en %F SIGMA_2015_11_a73
Tom H. Koornwinder. Fractional Integral and Generalized Stieltjes Transforms for Hypergeometric Functions as Transmutation Operators. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a73/
[1] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl
[2] Askey R., Orthogonal polynomials and special functions, Society for Industrial and Applied Mathematics, Philadelphia, Pa, 1975 | MR
[3] Askey R., Fitch J., “Integral representations for Jacobi polynomials and some applications”, J. Math. Anal. Appl., 26 (1969), 411–437 | DOI | MR | Zbl
[4] Bateman H., “The solution of linear differential equations by means of definite integrals”, Trans. Cambridge Philos. Soc., 21 (1909), 171–196 | Zbl
[5] Camporesi R., “The biradial Paley–Wiener theorem for the Helgason Fourier transform on Damek–Ricci spaces”, J. Funct. Anal., 267 (2014), 428–451 | DOI | MR | Zbl
[6] Dereziński J., “Hypergeometric type functions and their symmetries”, Ann. Henri Poincaré, 15 (2014), 1569–1653, arXiv: 1305.3113 | DOI | MR | Zbl
[7] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. I, Mc-Graw Hill, New York, 1953
[8] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. II, Mc-Graw Hill, New York, 1953
[9] Flanders H., “Differentiation under the integral sign”, Amer. Math. Monthly, 80 (1973), 615–627 ; Correction, Amer. Math. Monthly, 81 (1974), 145 | DOI | MR | Zbl | DOI | MR
[10] Karp D., Prilepkina E., “Generalized Stieltjes functions and their exact order”, J. Class. Anal., 1 (2012), 53–74 | MR
[11] Karp D., Prilepkina E., “Hypergeometric functions as generalized Stieltjes transforms”, J. Math. Anal. Appl., 393 (2012), 348–359, arXiv: 1112.5769 | DOI | MR | Zbl
[12] Karp D., Sitnik S. M., “Inequalities and monotonicity of ratios for generalized hypergeometric function”, J. Approx. Theory, 161 (2009), 337–352, arXiv: math.CA/0703084 | DOI | MR | Zbl
[13] Kodavanji S., Rathie A. K., Paris R. B., A derivation of two transformation formulas contiguous to that of Kummer's second theorem via a differential equation approach, arXiv: 1501.06173
[14] Letnikov A. V., “Research related to the theory of integrals of the form $\int_0^x (x-u)^{p-1} f(u) du$. III: Application to the integration of certain differential equations”, Mat. Sb., 7 (1874), 111–205 (in Russian)
[15] Lions J. L., “Opérateurs de Delsarte et problèmes mixtes”, Bull. Soc. Math. France, 84 (1956), 9–95 | MR | Zbl
[16] Miller K. S., Ross B., An introduction to the fractional calculus and fractional differential equations, A Wiley-Interscience Publication, John Wiley Sons, Inc., New York, 1993 | MR | Zbl
[17] Miller W. (Jr.), “Lie theory and generalizations of the hypergeometric functions”, SIAM J. Appl. Math., 25 (1973), 226–235 | DOI | MR | Zbl
[18] Olver F. W. J., Lozier D. W., Boisvert R. F., Clark C. W. (eds.), NIST handbook of mathematical functions, , U.S. Department of Commerce National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010 http://dlmf.nist.gov | MR
[19] Rainville E. D., Special functions, The Macmillan Co., New York, 1960 | MR | Zbl
[20] Saito M., “Symmetry algebras of normal ${\mathcal A}$-hypergeometric systems”, Hokkaido Math. J., 25 (1996), 591–619 | DOI | MR | Zbl
[21] Sitnik S. M., Transmutations and applications: a survey, arXiv: (in Russian) 1012.3741
[22] Sitnik S. M., Buschman–Erdelyi transmutations, classification and applications, arXiv: 1304.2114
[23] Sostak R. Ya., “Aleksei Vasilevic Letnikov”, Istor.-Mat. Issled., 5 (1952), 167–238 (in Russian) | MR
[24] Swathi M., Rathie A. K., Paris R. B., A derivation of two quadratic transformations contiguous to that of Gauss via a differential equation approach, arXiv: 1411.5262
[25] Szegő G., Orthogonal polynomials, American Mathematical Society, Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975
[26] Widder D. V., “The Stieltjes transform”, Trans. Amer. Math. Soc., 43 (1938), 7–60 | DOI | MR